Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the Origins of Vorticity in a Simulated Tornado-Like Vortex

On the Origins of Vorticity in a Simulated Tornado-Like Vortex AbstractThe authors explore the dynamical origins of rotation of a mature tornado-like vortex (TLV) using an idealized numerical simulation of a supercell thunderstorm. Using 30-min forward parcel trajectories that terminate at the base of the TLV, the vorticity dynamics are analyzed for n = 7 parcels. Aside from the integration of the individual terms of the traditional vorticity equation, an alternative formulation of the vorticity equation and its integral, here referred to as vorticity source decomposition, is employed. This formulation is derived on the basis of Truesdell’s “basic vorticity formula,” which is obtained by first formulating the vorticity in material (Lagrangian) coordinates, and then obtaining the components relative to the fixed spatial (Eulerian) basis by applying the vector transformation rule. The analysis highlights surface drag as the most reliable vorticity source for the rotation at the base of the vortex for the analyzed parcels. Moreover, the vorticity source decomposition exposes the importance of small amounts of vorticity produced baroclinically, which may become significant after sufficient stretching occurs. Further, it is shown that ambient vorticity, upon being rearranged as the trajectories pass through the storm, may for some parcels directly contribute to the rotation of the TLV. Finally, the role of diffusion is addressed using analytical solutions of the steady Burgers–Rott vortex, suggesting that diffusion cannot aid in maintaining the vortex core. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

On the Origins of Vorticity in a Simulated Tornado-Like Vortex

Loading next page...
 
/lp/american-meteorological-society/on-the-origins-of-vorticity-in-a-simulated-tornado-like-vortex-JZfZgwWX0y

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
DOI
10.1175/jas-d-22-0145.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe authors explore the dynamical origins of rotation of a mature tornado-like vortex (TLV) using an idealized numerical simulation of a supercell thunderstorm. Using 30-min forward parcel trajectories that terminate at the base of the TLV, the vorticity dynamics are analyzed for n = 7 parcels. Aside from the integration of the individual terms of the traditional vorticity equation, an alternative formulation of the vorticity equation and its integral, here referred to as vorticity source decomposition, is employed. This formulation is derived on the basis of Truesdell’s “basic vorticity formula,” which is obtained by first formulating the vorticity in material (Lagrangian) coordinates, and then obtaining the components relative to the fixed spatial (Eulerian) basis by applying the vector transformation rule. The analysis highlights surface drag as the most reliable vorticity source for the rotation at the base of the vortex for the analyzed parcels. Moreover, the vorticity source decomposition exposes the importance of small amounts of vorticity produced baroclinically, which may become significant after sufficient stretching occurs. Further, it is shown that ambient vorticity, upon being rearranged as the trajectories pass through the storm, may for some parcels directly contribute to the rotation of the TLV. Finally, the role of diffusion is addressed using analytical solutions of the steady Burgers–Rott vortex, suggesting that diffusion cannot aid in maintaining the vortex core.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: May 5, 2023

References