Access the full text.
Sign up today, get DeepDyve free for 14 days.
A New Benchmark Dataset with Production Methodology for Short Text Semantic Similarity Algorithms JAMES O'SHEA, ZUHAIR BANDAR, and KEELEY CROCKETT, Manchester Metropolitan University This research presents a new benchmark dataset for evaluating Short Text Semantic Similarity (STSS) measurement algorithms and the methodology used for its creation. The power of the dataset is evaluated by using it to compare two established algorithms, STASIS and Latent Semantic Analysis. This dataset focuses on measures for use in Conversational Agents; other potential applications include email processing and data mining of social networks. Such applications involve integrating the STSS algorithm in a complex system, but STSS algorithms must be evaluated in their own right and compared with others for their effectiveness before systems integration. Semantic similarity is an artifact of human perception; therefore its evaluation is inherently empirical and requires benchmark datasets derived from human similarity ratings. The new dataset of 64 sentence pairs, STSS-131, has been designed to meet these requirements drawing on a range of resources from traditional grammar to cognitive neuroscience. The human ratings are obtained from a set of trials using new and improved experimental methods, with validated measures and statistics. The results illustrate the increased challenge and the
ACM Transactions on Speech and Language Processing (TSLP) – Association for Computing Machinery
Published: Dec 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.