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            Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code MAJA VUKASOVIC , School of Electrical Engineering, University of Belgrade, Serbia ALEKSANDAR PROKOPEC , Oracle Labs, Switzerland Availability of proiling information is a major advantage of just-in-time (JIT) compilation. Proiles guide the compilation order and optimizations, thus substantially improving program performance. Ahead-of-time (AOT) compilation can also utilize proiles, obtained during separate proiling runs of the programs. Proiles can be context-sensitive, i.e., each proile entry is associated with a call-stack. To ease proile collection and reduce overheads, many systems collect partially context-sensitive proiles, which record only a call-stack suix. Despite prior related work, partially context-sensitive proiles have the potential to further improve compiler optimizations. In this paper, we describe a novel technique that exploits partially context-sensitive proiles to determine which portions of code are hot, and compile them with additional compilation budget. This technique is applicable to most AOT compilers that can access partially context-sensitive proiles, and its goal is to improve program performance without signiicantly increasing code size. The technique relies on a new hot-code-detection algorithm to reconstruct hot regions based on the partial proiles. The compilation ordering and the inlining of the compiler are modiied to exploit the information about the hot code. We formally describe the proposed algorithm and its heuristics, and then describe our implementation inside GraalVM Native Image, a state-of-the-art AOT compiler for Java. Evaluation of the proposed technique on 16 benchmarks from DaCapo, Scalabench and Renaissance suites shows a performance improvement between 22% and 40% on 4 benchmarks, and between 2.5% and 10% on 5 benchmarks. Code-size increase ranges from .8 0− 9%, where 10 benchmarks exhibit an increase of less than .5%. 2 CCS Concepts: · Software and its engineering→ Compilers; Runtime environments . Additional Key Words and Phrases: ahead-of-time compilation, inlining, inline substitution 1 INTRODUCTION Just-in-time (JIT) compilation is performed online during the execution of the program, and is done on a subset of frequently executed methods ś the other parts of the code are executed by an interpreter 38]. [ Ahead-of-time (AOT) compilation is an alternative approach in which the program is compiled to the target machine code before its execution begins. AOT compilation overcomes one of the main issues of JIT ś programs are slow during start-up due to being interpreted before getting compiled [44]. On the other hand, proile-guided optimizations (PGO) are the hallmark of JIT compilers: during the initial interpretation of the program, the runtime environment collects proile information about the program’s execution, such as the frequency of conditionals or the object types seen at diferent program locations, and relays this information to the optimizing compiler once the compilation starts. This can signiicantly improve the efectiveness of many compiler20optimizations , 29, 30, [ 34, 55, 56, 72, 76, 78, 97, 103]. Authors’ addresses: Maja Vukasovic, maja.vukasovic@etf.bg.ac.rs, School of Electrical Engineering, University of Belgrade, Belgrade, Serbia, 11000; Aleksandar Prokopec, aleksandar.prokopec@oracle.com, Oracle Labs, Zurich, Switzerland, 8004. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from permissions@acm.org. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0164-0925/2023/9-ART $15.00 https://doi.org/10.1145/3612937 ACM Trans. Program. Lang. Syst. 2 • Vukasovic and Prokopec Nevertheless, proile-driven optimizations are not restricted to JIT compilation ś in AOT compilation, the lack of runtime proiling is mitigated with oline pr68 oiling , 85, 110].runs One[common approach to oline proiling is to generate an instrumented program binary, which collects certain information about the program’s execution20 [ , 110, 120]. The information collected by the instrumented binary is then provided back to the AOT compiler, which uses the proiles to create a second, optimized binary, with the aim of improving program performance. Proiling information can be broadly categorized as context insensitive and context sensitive: the former associates each code location with at most one proile entry, while the latter associates each code location to multiple entries, each of which corresponds conte toxt a in which the respective code location was executed. In this paper, the contexts are the methods on the stack at the time when the proile was collected ś in other words, call stacks (which is usually what the term conte ł xt-sensitivež more narrowly implies). While most JIT-based runtime environments collect context-insensitive proile information for reasons of simplicity and low overhead [15, 23, 50, 80, 122], oline proiling facilitates the collection of accurate context-sensitiv 42]. e proiles [ Still, accurate collection of context-sensitive proiles can be expensive even in an oline setting (each proile entry needs to be associated with the complete call stack), so multiple approaches were developed to reduce the proiling overheads 35,[41, 47, 77, 119]. One common approach to reducing these overheads is to collect partially context-sensitive proiles , which associate each proile entry with only a conveniently selected suix of the call stack31[, 37, 101, 106, 120]. While the collection of partially context-sensitive proiles can be as eicient as context-insensitive collection, it is not clear how to best utilize partially context-sensitive proile information to aid compiler optimizations. This paper presents an algorithm for utilizing partially context-sensitive proiles to improve compilation. The algorithm uses the partial proiles to decide which larger parts of the code are łhotž, and then forms compilation units that co ł verž those łhotž parts. Its goal is toimprove performance of the generated code,without signiicantly increasing the size of the program binaries. The main idea in the proposed algorithm is to exploit partially context-sensitive proiles to opportunistically reconstruct hot portions of the code, and to improve inlining in those parts of the code. To achieve this, the algorithm modiies the compilation order and the inlining decisions of the compiler: throughout the text, we therefore refer to it ascompilation-sche a duling and inlining algorithm . In the irst phase, the algorithm łstitchesž the partially context-sensitive proiles to form abr for eadcrumb est of trailsś trees that trace parts of the program that are frequently executed. In the second phase, the algorithm starts the compilation from the roots of these hotness trails, and compiles them with more aggressive inlining decisions. The remaining cold portions of the code are thereafter compiled as they would be without the modiications. Contributions.After summarizing the problem in Section 2, we irst explain the algorithm formally, and then on the implementation level. The main contributions in this paper are as follows: • A novel compilation technique that uses partially context-sensitive proiles to improve the performance of ahead-of-time compiled programs, formalized in Section 3. This technique comprises an algorithm that opportunistically detects hot code using partial contexts, as explained in Sections 3.3 and 3.4, and modiications to existing inlining and compilation scheduling, as explained in Sections 3.5 and 3.6. • A complete, production-ready implementation of the proposed technique in GraalVM’s ahead-of-time compiler called Native Image, described in detail in Section 4. Concretely, within the existing GraalVM compiler, we modiied the compilation queue, added a new phase for the proile analysis, and used it to augment the existing inliner. • An evaluation on 16 benchmarks from DaCap46 o ], [ Scalabench108 [ ], and Renaissance99 [ ] benchmarking suites presented in Section 5. Compared to the previous implementation of the proile-guided optimizations in the Enterprise version of Native Image, the proposed algorithm improves performance in the range ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 3 of 22% - 40% on 4 benchmarks, and 2.5% - 10% range on 5 benchmarks. Our approach increases the compiled-code size between .8%0and 9%; for 10 out of 16 benchmarks the compiled-code size is increased only up to .25%. We also compared the introduced changes against GraalVM Native Image without PGO, standard GraalVM compiler in JIT mode, and HotSpot’s C2 compiler in JIT mode. After the main results, the evaluation shows how the algorithm parameters were tuned for performance, and presents a breakdown of performance-contributing factors. In Section 7, we present an overview of related work in the area of proiling, proile-guided optimizations, inlining and ahead-of-time compilation, and we conclude the paper in Section 8. 2 PROBLEM STATEMENT In this paper, we address the problem of utilizing accurate partially context-sensitive execution proiles to improve compilation-scheduling and inlining dein cisions a way thatdecreases the running time of compiled programs without signiicantly increasing the binar . Concr y size etely, the input to the problem is a set of proile entries, where each entry consists of a partial calling context, and the execution count associated with that calling context. Here, proile entries include at least those program locations that are conditional branches and virtual (indirect) calls. Each entry includes the execution count (for conditionals), or a mapping from the receiver-type to the number of occurrences of that type (for virtual calls). The partial term means that calling contexts do not consist of all the procedure calls starting from the program entry point and up to the proiled location, but only of some suix thereof. Byaccurate, we mean that there exists a proile entry for each proiled program location that was executed during the proiling run, and that the respective execution counts are exact (not approximate). Furthermore, an important assumption that we make on the input is that the set of proile entries forms compilation-unit-wise a partition . To explain this, consider the adjacent igure that shows an example acti- F G vation tree. An activation tree is a tree that contains all call stacks that B D E F exist during some execution of the program (this is formally deined in Section 3). Each node in the activation tree represents one subroutine C A D E of the program ś for example, the programentry point subroutine is the root of the tree, while the subroutines A and B are invoked from the entry point subroutine. entry point A compilation unit consists of a root subroutine, along with a con- nected set of subroutines that were inlined into the root subroutine. In Activation tree and its compilation units the igure, compilation units are delineated with a dashed line. A set of proile entries forms a compilation-unit-wise partition if (1) each subroutine in the compiled program on which the proiles were obtained is a root of at most one compilation unit, (2) each proile entry has a calling context that corresponds to some compilation unit (i.e. starts the subroutine that is the root of the compilation unit, and contains only subroutines within that compilation unit). In the example, there are four compilation units: one roentry oted at point, one at A, one at D, and another at E. The calling conteentry xts point→A→C and A→D are valid calling contexts in a compilation-unit-wise partition, because each of them starts with the compilation-unit root, and is completely within that compilation unit. The context E→G is not valid in that compilation-unit-wise partition, because it does not start with a compilation-unit root. The context entry point→B→D is also not valid, because it is not conined within a single compilation unit. Our assumption is that the input proile contains only valid entries for some compilation-unit-wise partition. Rationale.The constraints imposed on the input proiles may seem artiicial at irst glance, but they are a natural consequence of performing instrumentation within compilation units. Each position in a compilation unit (which consists of inlined subroutines), is assigned a set of unique counters, each corresponding to a calling within context ACM Trans. Program. Lang. Syst. 4 • Vukasovic and Prokopec that compilation unit. The GraalVM Native Image, in which we implemented the proposed algorithm, collects accurate, partially context-sensitive conditional and receiver-type proiles, which form a compilation-unit-wise partition. Native Image does so by producing an instrumented binary of the program, which is used to collect the proiles. The optimized binary is then created using these proiles. This two-tier approach is common: similar instrumented binaries can be created by GCC [20], LLVM [16], and Scala Native [110]. AOT compilation of a program assumes that all of the program’s methods have been compiled before the execution of the program, with the exception of those methods which are inlined at all callsites. Most of the methods contain one or more callsites, i.e. locations from which other methods are invoked (callees). During a single compilation of a method, a decision is made whether a callee at each callsite should be inlined or not. If the callee method is inlined, its body replaces the invocation at a callsite, and transitively its callees are considered for inlining. The callees that remain non-inlined are left to be compiled later in the compilation process. In this setting, a method is usually compiled only once. Since the same method can be found at multiple callsites, to avoid multiple compilations of the same method, most AOT compilers compile the methods in a particular order. Since the size and the content of the compilation units are not pre-compilation determined, the compilation order (i.esche . dule) itself is determined during the compilation. The usual compilation order starts from the entry points of the program, i.e. the methods in which the program execution starts, such as main or thread entry points. These methods are compiled irst, then all their callees are transitively scheduled in a queue, and compiled as previously described, if they had not been compiled already. The algorithm in this paper separates hot compilation units from the cold ones, and as such, has to modify the compilation process to ensure that no method would be compiled as cold if the heuristic determines that it is hot when invoked from another callsite. If the method were to be irst compiled as cold, that method could not be compiled again as a hot compilation unit. This is the reason why our algorithm irst compiles all the hot compilation units, and only then proceeds to compiling cold compilation units. This cannot be guaranteed only by taking the methods from the compilation queue following the original order. The motivation for focusing on compilation-scheduling and inlining is that many optimizing compilers focus primarily on intraprocedural optimizations 23, 66, 95,[120]. For these compilers, inlining is an enabler for other compiler optimizations, because it extends "what the compiler sees". By having compilation units cover "hot code", we expect to beneit most from intraprocedural optimizations such as escape analysis 112], path-duplication [ 88],[ constant folding, and others [98]. Outline of the proposed solution.Given a set of partially context-sensitive proiles, some of which have higher execution counts than others (i.e. are "hotter"), and thus represent small fragments of the program regions that are globally hot, our algorithm is tasked with inding compilation units that cover "hot" parts of the program; in essence, to connect those hot fragments. While inlining algorithms typically start with an individual subroutine and extend its compilation unit top-do in wn a manner ś by exploring the call tree from the compilation-unit root towards its callees until deciding to cease exploration and settling for a set of leaf nodes ś our proposed algorithm works bottom-up: it irst identiies the hottest partially context-sensitive entries, which represent hot compilation units. Our algorithm uses these proiles to form a for brest eadcrumb of trailsś trees that represent some portion of hot code. The algorithm then iteratively goes "upwards" ś it extends the trails across likely callers, and grafts together trails that share common methods. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 5 Initial hot proﬁles Extended calling contexts Merged calling contexts Hot compilation units The inal set of breadcrumb trails represents hot entry points ś compilation units for which additional compilation budget should be allocated. The breadcrumb trails are not used as actual inlining plans, but instead as inlining hints ś they bias the inliner to explore and inline along those paths, because this leads to code in which most execution time is spent. Once these hot parts of the program are compiled, the rest of the program is compiled in a regular manner. Concretely, the inlining suggestions implied by the breadcrumb trails are mixed with the existing heuristics of the inliner. 3 COMPILATION-SCHEDULING AND INLINING ALGORITHM In this section, we formally deine the proposed compilation-scheduling and inlining algorithm. We present the algorithm in a top-down manner, starting with a high-level description, and we then gradually increase the level of detail. Inputs. The input of the algorithm consists of the call graph of the program, along with the partial context- sensitive execution proiles. Each subroutine �∈ � of the program corresponds to one vertex in the call graph � = (�, � ⊆ �× �), and a call from subroutine � to another subroutine� corresponds to a directed edge�  � 1 2 1 2 of the graph.Partial context-sensitive execution pris oile a mapping from calling contexts to execution counts, where a calling context represents some suix of the program-counters on the call-stack, and the corresponding execution count represents how many times that call-stack occurred during the execution. calling Each contextis a list of code locations ℓ , ℓ , . . . , ℓ that are on the call-stack. Locations ℓ , ℓ , . . . , ℓ represent the callsites at 1 2 � 1 2 �−1 which the previous subroutine calls the next subroutine on the stack, ℓ repr andesents the speciic code location in the callee at the top of the call-stack. The case�when = 1 is calleconte d a xt-insensitive proile , and the case where, for every context,� corresponds to the number of calls on the call-stack, is calle fully conte d a xt-sensitive proile. Input simpliications. We deined the set of edges in the call graph as the subset �×of �, where � is the set of subroutines in the program. This implies that each subr � outine can call another subroutine � on at most 1 2 one callsite. In actual programs, a subroutine � may contain multiple callsites to another subr � .outine We now 1 2 show that the single-edge-per-vertex-pair limitation is inconsequential, because the multi-edged call graph can be reduced to the simpler representation. Discussion.The implementation must accept a call graph in which each pair of vertices may be connected by any number of edges. The multi-edged graph can be transformed into a single-edged graph in a way that the output of the algorithm in Listing 1 can be mapped back to a solution for the multi-edged graph.�Each of the vertex multi-edged call graph is translated to a subgraph with � as the thestarting vertex of the subgraph. For each edge � → � at location �in the subroutine represented by the verte�xto another subroutine represented by a vertex � , a virtual verte�x is inserted, and directed edges � → � and � → � are added. This transformation �,� �,� �,� corresponds to outlining each callsite of the original program into bridge a separate method. The resulting compilation schedule that the Algorithm 1 creates may mention virtual � in vertices its edges �,� � → � or � → � . Since each vertex� points to exactly one original v�erte , each x � → � edge �,� �,� �,� �,� is replaced with � → � . Similarly, since each virtual � verte is xpointed to by exactly one verte � ,xeach � �,� ACM Trans. Program. Lang. Syst. 6 • Vukasovic and Prokopec G.apply=8 F.apply G.apply F.apply=8 G.apply=8 F.apply=8 G.apply=8 foreach:3 F.apply=8 foreach:3 foreach:3 foreach foreach:3 foreach=1 foreach=1 F.apply=8 G.apply=8 min:13 max:19 min:13 max:19 foreach:3 foreach:3 foreach=1 foreach=1 min max min:13 max:19 min:13 max:19 min=1 max=1 min=1 max=1 main:7 main:8 main:7 main:8 main:7 main:8 main:7 main:8 main Partial Another partial Context-insensitive Fully context-sensitive Call graph context-sensitive proﬁle context-sensitive proﬁle proﬁle proﬁle Fig. 1. Input Examples for the Algorithm � → � edge is replaced with � → � . The transformed compilation schedule can have multiple edges at the �,� � same location �ś these represent virtual calls. In conclusion, any input call graph can be transformed into a call graph where every two vertices are connected 1 void foreach (int [] xs , int -> void f) { with at most one edge. We will introduce a simpliied 2 for ( int i = 0; i < xs. length ; i++) 3 f. apply (xs[i]); formalization for clarity purposes, but it solves a problem 4 } that is equivalent to our concrete compilation problem. Outputs. The output of the algorithm is a valid compi- 6 void main ( int [] args ) { 7 min( args ); lation schedule, and a mapping from compilation units 8 max( args ); to the compilation budget.compilation A schedule is a 9 } directed graph, in which each vertex corresponds to a 11 int min( int [] xs) { compilation unit, and each directed edge corresponds to 12 int m = Integer . MAX_VALUE ; a call from a compilation � to unit a compilation unit 13 foreach (xs , x -> if (x < m) m = x); |                           {z                           } 14 return m; �. Compilation unit � is a subroutine � of the program, F.apply along with the subroutines inline �d. A into compila- 15 } tion schedule is valid if there exists a compilation unit 17 int max( int [] xs) { whose root subroutine corresponds to the entry-point 18 int m = Integer . MIN_VALUE ; to the program, and if there is a directed edge for each 19 foreach (xs , x -> if (x > m) m = x); |                           {z                           } 20 return m; call (corresponding to the original program) between two G.apply compilation units. 21 } Inlining [39, 63, 104] is an optimization in which the Listing 1. Example Program call to a subroutine is replaced with a copy of the code belonging to that subroutine. We say that a compilation unit� calls another compilation unit � if there is a code location � that incalls the root subroutine � of�. A compilation schedule valid isif there exists a compilation unit whose root subroutine corresponds to the entry-point to the program, and if there is a directed edge for each call between two compilation Compilation units. budget is a function that assigns the amount of computational resources that an optimizing compiler is allowed to spend when compiling a particular compilation unit. Example input.The program in Listing 1 computes the smallest and the largest integer from the given list of arguments. This program relies on a generic foreach subroutine that applies a lambda (i.e. function f to value) each integer in a given array. Starting with main thesubroutine, the program consecutively calls minthe and max subroutines, each of which invokes foreach with a lambda value that tracks the smallest or the largest integer, respectively. Note that, from the deinitionforeach of the subroutine, it is impossible to tell what is the exact implementation of the lamb f ś this da depends on where foreach is called from. We say that the call f isto indire[91]. ct On the other hand, calls max to , min and foreach are direct . ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 7 The corresponding call graph is shown in Figure 1. We void foreach (int [] xs , int -> void f) { examine several proiles that track the target-subroutine for ( int i = 0; i < xs. length ; i++) f. apply (xs[i]); invocation counts at the callsites. Each calling context is shown as a stack of method-line-number pairs, and each calling context is mapped to the invocation counts void main ( int [] args ) { int min = Integer . MAX_VALUE ; of all the possible call targets. The two lambda values foreach (args , x -> if (x < m) m = x); used by min and max are named F and G, respectively. int max = Integer . MIN_VALUE ; The irst partially context-sensitive proile "cuts" the call- foreach (args , x -> if (x > m) m = x); stacks in themin and max subroutines, so theforeach calling context counts calls toF band othG lambdas. In Listing 2. Input Example the second partially context-sensitive proile, the calling contexts are "cut" inmain, which makes the twoforeach calling contexts more precise ś it is now clear F is that only invoked when foreach gets called from min. We can conclude that the context-insensitive proile does not relay less information than the irst partially context- sensitive proile, in the following sense. Note that min the call at main:7 to is direct, meaning that main:7 is the only callsite minof ś the entry min:13 in the context-insensitive proile can be extended and merged with main:7 (and similarly max:19 withmain:8), which yields a partially context-sensitive proile that therepresents same execution . Furthermore, the fully context-sensitive proile does not relay more information than the second partially context-sensitive proile. Input simpliication exampleListing . 2 contains a modiied version of the program from Listing 1. Instead of invoking metho min ds and max from the foreach main method, their bodies are manually inlined directly maininto methothe d. foreach Thus, method main contains two callsites that target the same metho foreach d . loc1 loc2 In the adjacent igure, two virtual vertices loc1 and loc2 were added to the main main method main from Listing 2 as the callsites outlined into the bridge methods. Example outputs. Figure 2 shows several possible outputs of the algorithm. Compilation schedule I consists of two compilation units ś the compilation unit rooted atmain inlines the subroutines min and max, each of which calls the second compilation unit rooted at foreach. Since the second compilation unit is called from two calling foreach contexts, polymorphically the inlines both implementations applyof [78]. In compilation schedule II,main the compilation unit does not inline any subroutines, somin and max are the roots of two separate compilation units, both of which inline a separate copy offoreach. The beneit of schedule II is that foreach can inline a single lambda, and avoid a type-check. In compilation schedule III, no inlining is carried out ś in this case, each compilation unit consists of a single subroutine. The last compilation schedule is not valid, because it does not include the edge G.apply for the call to (which can occur in execution). F.apply G.apply F.apply G.apply F.apply F.apply G.apply foreach foreach foreach foreach foreach min max min max min max min max Compilation Compilation unit root main main main main Compilation schedule I Compilation schedule II Compilation schedule III Invalid compilation schedule Fig. 2. Output Examples for the Algorithm ACM Trans. Program. Lang. Syst. 8 • Vukasovic and Prokopec HOT HOT HOT HOT F.apply G.apply F.apply G.apply F.apply G.apply foreach G.apply foreach F.apply foreach COLD COLD COLD COLD foreach foreach min max max main main main min main main Initial state After compiling foreach After compiling G.apply After compiling main Final output Fig. 3. Example of the Compilation-Ordering High-level description. The Algorithm 1 (described Algorithm 1:Compilation Scheduling shortly) uses the call graph and the partially context- input :call graph � , entry-point�, proileΠ sensitive proile information to deduce which parts of output :compilation schedule Σ, budget � the program are hot, and to invest more efort into com- 1 Σ = ∅; � = ∅; cold = { � } ; piling those parts. To do this, it separates compilation 2 hot = DetectHot(� , Π); units into hot and cold. In this paper, the mapping from 3 whilehot ≠ ∅ do compilation units to the compilation budget is binary ś 4 hot = hot \ { � } : � ∈ hot ; � � if a compilation unit is hot, it gets an increased compi- 5 � = InlineHot(� ); lation budget, and if it is cold, it gets the default budget. 6 Σ = Σ ∪ { � }; � = � ∪ { � }; The motivation is to increase the degree of optimization 7 cold = cold \ { � } ; in code that is frequently executed, but avoid bloating 8 for �∈ callees(� )\ (Σ ∪ hot) do the size of the code that does not signiicantly contribute 9 ifIsHot(S) then hot = hot ∪ { � }; to the total execution time. 10 else cold = cold ∪ { � }; The algorithm maintains two queues hot śand cold. It 11 end irst picks the initial set of hot subroutines, and places 12 end them on the hot queue. Then, it iteratively removes 13 whilecold ≠ ∅ do a hot subroutine, and performs inlining to create the 14 cold = cold \ { � } : � ∈ cold ; � � compilation unit that starts with that hot subroutine. If, 15 � = InlineCold(� ); after inlining, the hot compilation unit calls other sub- 16 Σ = Σ ∪ { � } ; routines (i.e. callees) that were not previously pushed 17 for �∈ callees(� )\ (Σ ∪ cold) do to the queue, then the algorithm places each such callee 18 cold = cold ∪ { � }; on either the hot queue or the cold queue. After the hot 19 end queue becomes empty, the algorithm schedules the re- 20 end maining cold compilation units (including the program entry-point), and iteratively removes the cold subrou- tines until the cold queue is empty. This high-level description is captured in Algorithm 1, while more detailed information is provided in the following subsections. Example execution.To see how the algorithm works, consider the program from the earlier example, whose compilation is in Figure 3. The algorithm irst foreach puts the subroutine to the hot list, andmain the subroutine (i.e. program entry-point) to the cold list. It then remo foreach ves from the hot list, inlines F.apply, and decides that there is no budget left for inlining G.apply. The algorithm nevertheless concludesG.apply that is hot, and places it on the hot list. After the hot list becomes empty, the algorithmmain sche,dules and refrains from inlining due to low frequency of the callsites min and ś max are pushed to the cold list. Importantly, the algorithm does not inline hot compilation units into cold compilationmin units norś max neither inlines foreach. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 9 Discussion.There are several important details that we must clarify. First, the algorithm needs a concrete set of steps to decide on the initial set of hot subroutines. Second, subroutines must be expanded to compilation units with a concrete inlining policy. Third, after a hot compilation unit is formed, the algorithm must decide which of the remaining callees are hot, and which are cold. In Algorithm 1, these concerns are captured with procedur DetectHo es t, InlineHot, InlineCold and IsHot, respectively. To drive the behavior of these procedures, our algorithm estimates which subroutines are hot in a particular calling context. A subroutine hot either is if the estimated time spent exclusively in that subroutine (without the callees) exceeds some ixed percentage � of the total time spent in the program, or if the subroutine transitively calls other hot subroutines, up to some point determined by the compilation budget. The rest of this section contains a detailed description of how the aforementioned procedures work. The speciics of the algorithm are thus divided into three components: (1) DetectHot: the procedure that constructs breadcrumb trails using the call �graph and the partial context-sensitive proile �, described in Section 3.3. (2) InlineHot and InlineCold: the modiied inlining algorithm guides its inlining decisions using the breadcrumb-trail information, described in Section 3.5. (3) IsHot: the procedure that uses the breadcrumb trails to separate callees of a compilation unit into hot and cold subroutines, described in Section 3.6. 3.1 Call Trees To precisely deine breadcrumb trails, we irst express what we presume under the term call tree. Notation.Before we deine call trees, we adopt the following scheme for referring to nodes within trees. Let’s assume that every node in the tree is associated with root some subroutine� (multiple nodes may be associated with the same subroutine). s ,s 1 2 The notation� then refers to a node that is reached by starting from the root � ,� ,...,� 1 2 � s ,s ,s 1 2 3 of the tree (whose subroutine is � ), and following the sequence of nodes whose 1 s s ,s ,s ,s subroutines are� , � , and so on, until reaching a node whose subroutine � . In is 1 2 3 4 2 3 � other words, we treat the tree as a preix tree [73], and the sequence � , � , . . . , � 1 2 � as the preix stored in the tree. For our purposes, the node � will represent � ,� ,...,� 1 2 � a call stack of subroutines. This is illustrated in the adjacent igure. The notation� or � , which does not have a sequence in the subscript, refers to any node in the tree, and is used when the preix of the node is not important in the discussion. When the subscript is a single-element sequence, we take care to disambiguate what we mean in the text. Call graphs. For a speciic call graph � , we rely on a function �������(�) that returns the set of subroutines that � can invoke, according to the call graph � . Note that, in the previous example ���, ���� (foreach) consists Listing 1 ofF.apply and G.apply. �������(�) ≡ {� : �→ � ∈ �} where � = (�, � ⊆ �× �) (1) � 2 2 For readability, we omit the inde � later x in the text ś we always mean łthe � that is compiledž. We deine the root of a call tree as the ancestor node of all the other common nodes ( inimum ): ����(�, �) = inf � (2) We now introduce two partial orders on (ininite) graphs. subset Therelation between graphs � = (� , � ) 1 1 1 and � = (� , � ) is deined as follows: 2 2 2 (� , � ) ⊆ (� , � ) ≡ � ⊆ � ∧ � ⊆ � (3) 1 1 2 2 1 2 1 2 ACM Trans. Program. Lang. Syst. 10 • Vukasovic and Prokopec Graph � = (� , � ) nests within the graph � = (� , � ) if and only�if and � induce partial orders�onand 1 1 1 2 2 2 1 2 1 � (i.e�. and � are directed acyclic graphs), � and � share a common inimum (i.e. they havecommon a root), 2 1 2 1 2 and � is a subset of � (note that notation����(�, �) implies that unique the least element �ofexists, further 1 2 implying that � and � must be connected and acyclic): 1 2 (� , � ) ⋖ (� , � ) ≡ ����(� , � ) = ����(� , � ) ∧ (� , � ) ⊆ (� , � ) (4) 1 1 2 2 1 1 2 2 1 1 2 2 The subset and nests-within relations are illustrated by the examples in the following igu � (rwhich e. The graph consists of two disconnected components) is not a call tree, but is a subset of the�call . Thetr call ee tr� ee is 2 3 nested within � , but the call tr� ee is not nested within � , because they do not share a common root. 4 5 6 e e e e 1 1 1 1 s s 3 2 3 s s s s s s s s 2 3 2 3 2 3 2 3 ⊆ ⋖ ⋖ s s s 4 4 5 s s s s s s s s s s 4 4 5 4 4 4 5 4 4 5 G C C C C C 1 2 3 4 5 6 Call trees. Next, we introduce the termcall tree. Informally, a call tree is a preix tree of all the possible call stacks of a given program. Let a program � = (�, �) consist of the call graph � and the entry-point subroutine �. The unfolding of a program P, � (�) is a tuple(�, �) composed of a set of nodes� and a set of edges�, in which the root node corresponds to the entry point� of�, each node � corresponds to a call stack ending with the subroutine �,...,� � = ���(� ), and the set of children�of is� such that � ∈ �������(� ). � �,...,� �,...,� �,...,� ,� �+1 � � � � � �+1 � (�) ≡ (�, � ⊆ � × � ) where � ∈ � ∧ � ∈ �������(� ) ⇔ � ∈ � ⇔ � ∈ � ∧ (5) �+1 � � �,...,� �,...,� ,� � � �+1 � ∈ �������(� ) ⇔ � ∈ � ⇔ � → � ∈ � �+1 � � �,...,� �,...,� �,...,� ,� � � � �+1 Note that any call tr� eeis nested within the unfolding � (�) of the program, that is, � ⋖ � (�). The following igure shows two call graphs, and their corresponding call-tree examples, For a call graph on the left, the corresponding call tree is inite, while in case of the call graph on the right, because it contains a cycle, a call tree is potentially ininite, which we demonstrate on the rightmost tree in the igure. e e 1 1 1 e e 1 1 � e ,s � � 1 2 e ,s ,s ,s e ,s 1 2 3 4 � s 1 3 s s e ,s 2 3 4 1 2 s s 2 3 s s s s � 2 3 2 4 e ,s ,s ,s ,s ,s ,s 1 2 3 4 2 3 4 � s s s � e ,s ,s 3 4 e ,s ,s 1 3 5 1 2 4 s s s s 4 4 5 s 4 5 3 ... G ,e U(G ,e ) G ,e U(G ,e ) 1 1 1 1 2 2 2 2 Example. The previous igure illustrates call trees and the unfolding of a program on several examples. These examples correspond to the program from Listing 1. The leftmost tree represents the unfolding of a program, and the remaining two trees represent the examples of the call trees, which nest within the irst tree. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 11 3.2 Breadcrumb Trails Now we deine thebreadcrumb trails . Informally, they are similar to call trees, except they do not need to start with the entry point G.apply F.apply of the program. In another words, they do not need to be nested foreach in a call tree per Equation 4. Instead, breadcrumb a trailof the foreach F.apply G.apply program � is any inite, connected subgraph of some call tree of min max min foreach the program �. We deine the set of breadcrumb trails of program main � as follows (beloℵwis , the size of the set of natural numb N,ers Breadcrumb-trail examples so we use |� | < ℵ to say "inite"): �(�) ≡ {(�, �) : |� | < ℵ ∧ � ⊆ � × � ∧∃�, � = ����(�, �) ∧∃� ∈ ℂ(�),(�, �) ⊆ �} (6) By Equation 6, a breadcrumb trail � is generally not a call tree, and its main restriction is that the children of each node � are from������(����(�)). The breadcrumb trail � = (�, �) is, however, a tree, with a well-deined root ����(�, �). A node in the breadcrumb trail is calle breadcrumb d a . Note, that a breadcrumb trail is not just a call tree because each node in the call tree must contain all the callees of the corresponding subroutine, whereas in a trail it does not. Consider the example breadcrumb trails shown below. The trailmin with root theleads up toF.apply, while the trail withforeach the root leads to bothF.apply and G.apply ś both of them serve as recipes for inding the hot subroutines starting from speciic calls. In this paper, the use-case for breadcrumb trails is, loosely speaking, to transitively connect a call to its łhotž callees, that is, subroutines in which most execution time is spent. However, the deinition does not mandate that the subroutines are łhotž ś a breadcrumb trail could be used for other purposes too. Note that, in the igure, some nodes are annotated with the orange color. The root is always annotated with orange, but any other node of the breadcrumb trail can also be annotated. These annotated nodes are calle graftd points , and the respective trails are calle annotate d d breadcrumb trails . The set of annotated breadcrumb trails of a program � are deined as follows: �(�) ≡ {(�, �,�) : (�, �) ∈ �(�) ∧ � ⊆ � ∧ ����(�, �) ∈ �} (7) In the remaining text, we will use thetrail term to refer to annotated breadcrumb trails. The purpose of the graft points will be to annotate the places where two trails can be grafted to each other. Operations.We now deine operations on the annotated breadcrumb trails, which are central in the rest of the algorithm. Assume that we have a relatively short breadcrumb trail ś it only describes the path to the hot code from callers that are łvery close.ž Given such a trail � = (�, �,�) that starts with����(�) = ����(�, �), it is of interest to expand it with a calling ℓ ,conte . . . , ℓ xt . The operation⊙, callebr deadcrumb-trail expansion , 1 � produces a new trail that starts with a chain of nodes that correspond ℓ , .to . . , ℓ , and in which node ℓ points to 1 � � ����(�). The restriction here is that ℓ calls ���(����(�)). In the adjacent igure, the trail rootedforeach at is ACM Trans. Program. Lang. Syst. 12 • Vukasovic and Prokopec expanded to a trail rooted main at , allowing the hot code to be detected from łfurther awayž. (�, �,�) ⊙ ⟨ℓ ,..., ℓ ⟩ ≡ ({� ,..., � }∪ � ,{�  � ,..., �  ����(� , � )}∪ � , � ∪ � ) 1 � ℓ ℓ ,...,ℓ 0 ℓ ℓ ,ℓ ℓ ,...,ℓ 0 0 0 ℓ 0 1 1 � 1 1 2 1 � 1 � = {� : � ∈ � } � = {� : � ∈ �} (8) 0 ℓ ,...,ℓ ,� ,...,� � ,...,� 0 ℓ ,...,ℓ ,� ,...,� � ,...,� 1 � 1 � 1 � 1 � 1 � 1 � � = {� → � : � → � ∈ �} 0 ℓ ,...,ℓ ,� ,...,� ℓ ,...,ℓ ,� ,...,� ,� � ,...,� � ,...,� ,� 1 � 1 � 1 � 1 � �+1 1 � 1 � �+1 (� , � , � ) 0 0 0 (� , � , �) Calling context F.apply ⟨ℓ ,...,ℓ ⟩ 1 � F.apply foreach min main foreach min main Breadcrumb-trail In Equation 8, existing nodes are renamed so that they expansion include the ℓ , . . . , ℓ preix, and a new set of nodes and (� , � , � ) (� , � , �) 1 � 0 0 0 (�ξ, �ξ, �ξ) directed edges is additionally included for each call in the F.apply F.apply G.apply calling conte ℓ xt , . . . , ℓ . 1 � G.apply Assume now that we have several trails that contain a foreach foreach �min,foreach foreach breadcrumb for the same subroutine �. When considering min min which callees� in are łimportantž (as explained later), one needs to inspect the breadcrumbs for � in all such trails. Breadcrumb-trail grafting This is inconvenient ś it is much easier for a compiler to inspect a single breadcrumb whenever it needs to decide is łimportantž. Therefore, we deine another breadcrumb-trail operation , callegrafting d , which attaches a trail (� , � ,� ) to a node � within another trail (�, �,�). In the adjacent igure, grafting adds the callsite G.apply of � � � to the foreach node within the min trail. The grafting in this particular example is correct, albeit not too useful in practice ś in our program, methoG.apply d is obviously never invoked from the calling context that starts withmin. More formally, given a target �trail = (�, �,�), its breadcrumb� ∈ � and a trail � = (� , � ,� ) such � ,...,� � � � 1 � that ���(� ) = ���(����(�)), i.e�. = ���(����(� , � )), the grafting � � produces a copy of� in � ,...,� � � � � 1 � � ,...,� 1 � which the node� has an additional subtree fr�om for each child no�de ∈ �ℎ�����(�����(�)) such � ,...,� � ,� 1 � � 2 that ∄� ∈ �ℎ�����(�� ), while all the subtrees of the childr � ∈ en �ℎ�����(�����(�)) for which � ,...,� ,� � ,...,� � 1 � 2 1 � ∃� ∈ �ℎ�����(�� ) are recursively grafted. � ,...,� ,� � ,...,� 1 � 2 1 � (� , � ,� ) (�, �,�) ≡ (� ∪ � , � ∪ � ,� ∪ � ) where ����(� , � ) = � � ∈ � � � � � 0 0 0 � � � � ,...,� � ,...,� 1 � � = {� : � ∈ � } � = {� : � ∈ � } 0 � ,...,� ,� ,...,� � ,� ,...,� � 0 � ,...,� ,� ,...,� � ,� ,...,� � (9) 1 � 2 � � 2 � 1 � 2 � � 2 � � = {�  � : �  � ∈ � } 0 � ,...,� ,� ,...,� � ,...,� ,� ,...,� ,� � ,� ,...,� � ,� ,...,� ,� � 1 � 2 � 1 � 2 � � +1 � 2 � � 2 � � +1 If we adopt the convention that(� , � ,� ) ∪ (�, �,�) ≡ (� ∪ �, � ∪ �,� ∪ �) and that ����(� , � ,� ) ≡ � � � � � � � � � ����(� , � ), then we can deine grafting more concisely as follows: � � � (�, �,�) ≡ (�⊙ ⟨� , ... , � ⟩) ∪ (�, �,�) where ����(�) = � � ∈ � (10) � 1 �−1 � � ,...,� � ,...,�� 1 � Table 1 summarizes the most important symbols introduced so far. Having deined the basic trail operations, we can now describe the hot-code detection algorithm. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 13 Symbol Name Meaning (�, �) Program Call graph � with a distinguished entry-p�oint . Set of subroutines that can be invoked from a subroutine � in a (Eq. 1) �������(�) Callees call-graph � (i.e. outgoing edges �of ). A node that corresponds to a call stack of subroutines � , � , ..., 1 2 � Node (in a tree structure) � ,...,� 1 � � in the call-tree (or a trail) roote � .d at � 1 Tree � nests within the tr� ee if they have the common root, 1 2 (Eq. 4) � ⋖ � Nests within 1 2 and tree � is a subset of � . 1 2 Unfolding of a programTree in which the root is the entry point �, and each node � �,...,� � (�, �) (Eq. 5) (�, �) has a set of childr�en , where � ∈ �������(� ). �,...,� ,� +1 �+1 � � � � Preix tree of all the possible call stacks of a given program � (�, �) Call tree (�, �). Set of inite tre� es= (�, � ) such that � is a subset of some call (Eq. 6) �(�, �) Breadcrumb trails tree � , i.e�. ⊆ � (�, �). Set of trees� = (�, �,� ), such that each trail � = (�, � ) is (Eq. 7) �(�, �) Annotated trails annotated with a set of graft points � ⊆ � . Operation that attaches the calling conte ℓ ,.xt .., ℓ on top of the 1 � (Eq. 8) �⊙ ⟨ℓ ,..., ℓ ⟩ Trail expansion 1 � root of the trail �. Operation that attaches the trail � to an existing node � � ,...,� (Eq. 9) 1 � � � Trail grafting � ,...,� 1 � within another trail �. Table 1. Summary of Key Symbols from Sections 3.1 and 3.2 3.3 Hot-Code Detection We established that the code from Algorithm 1 separates the call-graph into hot and cold regions. The hot regions of the call graph consist of code that is frequently executed, along with the calling context that is suiciently large to include the relationships required for code optimizations. The purpose of the breadcrumb trails from the previous section is to delimit these hot regions. The breadcrumb trails that delimit the hot code, which the scheduling algorithm relies on, must be derived from the program’s execution proile. Consider the task of constructing the trails from a fully context-sensitive proile ś one way to achieve this would be to create trails for the set of calling contexts whose execution count is above a threshold � , and to then graft them all together. However, the input to our algorithm partially is a context-sensitive proile. The hottest calling contexts in such a proile are typically too short to connect code regions in a useful manner, so the corresponding trails must be expanded until the covered part of the call tree is suiciently large for subsequent compiler optimizations to potentially improve performance. The algorithm is thus posed with several challenges: selecting a good set of initial calling contexts, choosing the beneicial calling contexts to speculatively expand across, and knowing when to stop the expansion ⊙ and grafting operations. We call this part of the algorithm hot-code detection . High-level description. The algorithm starts by selecting a set of initial hot contexts, and converts them to trails. These trails are grafted together wherever this is possible. The following process is then repeated until reaching a termination condition (Section 3.4): the most favorable trail is selected, and expanded across calling contexts in which it is hot. These expanded trails are then grafted into other trails from the trail set, or placed back into the trail set if grafting is not possible. ACM Trans. Program. Lang. Syst. 14 • Vukasovic and Prokopec hotness(ctx)>� < > < > "<"=8 ">"=8 < > < > G.apply:19 F.apply G.apply F.apply G.apply F.apply:13 foreach:3 foreach:3 F.apply G.apply F.apply G.apply Graft Expand trails foreach foreach foreach=1 foreach=1 Convert foreach foreach hot contexts trails foreach across contexts min:13 max:19 to trails min max foreach=1 foreach=1 min=1 max=1 min:13 max:19 main:7 main:8 Example detection.Consider the scenario in the preceding igure. The initial set of proiles (on the left) is partially context-sensitive, so that some proiles have the context length � = 1, and some have � = 2. The algorithm irst picks calling contexts whose proile-counts exceed a predetermine�d: these valueare foreach→F.apply→‘<‘, and foreach→G.apply→‘>‘. These calling contexts are then converted to the initial set of breadcrumb trails. In the next step, each trail � is grafted onto nodes � of other trails such that ���(����(�)) = ���(� ) ś � ,...,� � ,...,� 1 � 1 � in the preceding example, the irst foreach trail (which calls F.apply) is grafted to the second foreach (which calls G.apply). The algorithm then searches the proiles to identify the possibleforeach callers , determines of that min and max are the most common callers, and expands foreach along each of these calling contexts. The two aforementioned steps, grafting and expansion, are repeated consecutively until the algorithm decides that it ran out of budget. In this example, the algorithm stops after producing two trails that are roote mind and at the max subroutines. Note that the calling contexts in the previous example are suiciently long to allow static analysis to determine that G.apply is never called frmin om, and that F.apply is never called frmax om. In other words, the resulting trails are not always nested within a minimum call tree. We do not remove unreachable calls during hot-code detection, because compilers have optimizations that remove such calls after callees get inlined into a single compilation unit 43, 84[, 87, 112, 118]; moreover, state-of-the-art inlining algorithms use datalow analyses to simplify the call tree before inlining 62, 81 happ , 97ens , 107[]. In other words, we later ensure that the inliner neither inlines G.apply frommin’s calling context, F.apply nor frommax’s calling context, even though the trails contain these calls. Therefore, we do not simplify the trails during hot-code detection, since in our implementation, the inliner prunes the trail later. Trail-set operations.To formally describe the algorithm, we deine two convenience operations on sets of trails, called union-grafting ∪ and self-root-grafting . Union-grafting operation merges two sets of trails together, ∇���� while the self-root-grafting operation grafts a single trail from the set onto other trails from the same set. To determine the order in which certain operations are performed, we will choose a speciic ordering for the nodes within trails, and the trails within trail L� M sets. be aLet sequence of elements from the set � , which are ord ordered according to the total order ord: L� M ≡ ⟨� , ... , � ⟩ : � ∈ � ∧ � < � ⇒ �< �∧ |� | = � (11) ord 1 � � � ord � Next, letpre(�) be the total order of the nodes in trail �, induced by the left-to-right preorder traversal �. The of preorder is the lexicographic ordering of the call stacks represented by the nodes: � < � ≡ � ... � < � ... � (12) � ,...,� pre(�) � ,...,� 1,1 1,� lex 2,1 2,� 1,1 1,� 2,1 2,� 1 2 1 2 As an example, the igure below shows the node ordering of a trail with ive nodes: ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 15 s s 1 1 � s ,s 1 3 s s s s s s s 1 2 3 4 5 2 3 ⦇ ⦈ � ⟨ ⟩ pre s ,s 1 2 � � � � � s s ,s s ,s s ,s ,s s ,s ,s 1 2 1 3 1 3 4 1 3 5 4 5 � s ,s ,s s ,s ,s 1 3 4 1 3 5 Union-grafting ∪ relies on the right-associative helper operation , which is similar to the grafting operation , the diference being that it grafts to all possible graft points instead of a�sp . In eciic otherpwoint ords, given a graftee trail � = (� , � ,� ) and a target trail � = (�, �,�), � � grafts� to all candidate graft-points�in , i.e. � � � to all graft-points that represent the same subroutine as the ro�ot . The of graft-points are ordered in preorder traversal of the trail �. The following igure shows two examples ofopthe eration. On the left, the trail � → � is grafted to both 3 6 graft points � of the target trail. On the right, the �trail ← � → � cannot be grafted to any graft points in the 3 3 2 7 target trail, because the target trail has no graft point � .with s s s s 1 1 1 1 s s s s s s s s s 2 3 2 3 s 2 3 2 3 3 2 = = s s s s s s s s s s s s s s s s s s 3 4 5 3 4 5 6 3 4 5 6 3 4 5 6 6 3 7 s s s s s s 4 4 6 4 6 4 6 The deinition of theoperation uses a helper function � to recursively graft at all candidates: � (�, �,�) ≡ g(�,(�, �,�),�) � g(�,(�, �,�), � \ � ) if� ≠ ∅∧ � = sub(����(� , � )) � last �,�  � � last �   (13) g(�,(�, �,�), �) ≡ g(�,(�, �,�), � \ � ) if� ≠ ∅∧ � ≠ sub(����(� , � )) last �,� � � (�, �,�) otherwise where L�M = ⟨� , ... , � ⟩ � = � ���(�,�,� ) � ,...,� � ,...,� last � ,...,� 1,1 1,� �, 1 �,� �, 1 �,� 1 � � Finally, to establish an ordering on sets of trails, we deine the lexor ondering trails� and � as the lexicographic 1 2 ordering of the lists obtained with a preorder traversal of the�noand des �of: 1 2 (� , � ,� ) < (� , � ,� ) ≡ L� M < L� M (14) 1 1 1 lex 2 2 2 1 pre(� ,� ,� ) lex 2 pre(� ,� ,� ) 1 1 1 2 2 2 In Equations 12 and 14, we deined lexicographic orderings to order the nodes and the trails, as this allows deining subsequent operations deterministically. Without any loss of generality, we could have picked diferent orderings, but in the formalization we adher lex efor to simplicity. Union-graft operation∪. Assume that we want to create a union of two sets of trails � and � , but to avoid having multiple trails with the same root subroutine in the result. The union-graft operation achieves this by grafting trails fr � om to trails �in wherever possible, and then creating a union with the remainder. An example of� ∪ � is shown in the following igure. s s s 9 s 9 1 s 1 5 s s 6 5 s s s s 5 s s 5 2 3 2 3 s s = s ∪ 3 2 s 3 s s s s s 6 4 1 3 2 7 s s s 1 7 s s s s 4 s s 4 5 4 1 X 4 5 1 X Y Y 0 1 ACM Trans. Program. Lang. Syst. 16 • Vukasovic and Prokopec To union-graft a trail�set into a trail�set , the set � can be separated into two sets� and � , so that trails 0 1 from� can be grafted to trails�in⊆ � , and trails from � cannot be grafted to trails�in . The union-graft 0 0 1 operation grafts each trail � ∈ � to the graft sites within trails � ∈ � in the lexicographic order of the�trails . � 0 � 0 � The result of the grafting is uniied with the remainders � = � \ � and � (below∪ , is disjoint union): 1 0 1 � ∪ � ∪ {� ... � � }∪ � ∪ (� \{� }) if � ≠ ∅ 1 1 1 � 1 0 0 1 0 � ∪ � ≡ � ∪ � if � = ∅ 1 1 0 (15) · · where � = � ∪ � � = � ∪ � L� M = ⟨� , ... , � ⟩ L� M = ⟨� , ... , � ⟩ 0 1 0 1 0 lex 1 � 0 lex 1 � � = {� ∈ � : ∃� ∈ �, � � ≠ �} � = {� ∈ � : ∃� ∈ �, � � ≠ �} 0 0 The preceding deinition says the following: for all � ∈the � that trails can be grafted to at least one trail � ∈ � , graft them to all trails � ∈ � to which they can be grafted. Leave the remaining trails � ∈ � unchanged, and produce a union of all these trails. Self-root-graft operation . Self-root-graft operation takes a single trail � as ansetinput, and grafts one of ∇���� its trails � to the roots of other trails fr�om . In Equation 16, it is deined as following: if there is a candidate trail � in� that can be grafted to a root of another trail, then it is grafted to the roots of any such trail from � . Otherwise, the result is the original �trail . The self-r set oot-graft operation is illustrated in the following example, in which trail � ← � → � is grafted onto the roots of two other trails, but not onto any other graft 2 1 3 points with the subroutine � . {� � : � ∈ �(� ,�)}∪ (� \ �(� ,�)) ⟨� , ... , � ⟩ = L{� ∈ � : �(�,�) ≠ ∅}M   0 0 0 0 � lex root(�) ∇ � ≡ ���� (16) � ��ℎ������ where �((� , � ,� ),�) = {(�, �,�) ∈ � : � ≠ (� , � ,� ) ∧ ����(�, �) = ����(� , � )} � � � � � � � � 0 s s s s 1 s s s 1 3 1 3 1 1 inf s s s s s s s s s s s s s s s s 2 3 5 7 1 5 2 3 7 1 2 3 4 5 4 5 The ix-point(fix∇ )(�) represents the limit of the repetitive application of the self-root-grafting operation ���� for the trail �set . Below, notation◦ represents � applications of a function lim( is a�-deinition of the limit �∞ on a metric�(�, � ) that is 0 if and only � =if � , and is a positive constant otherwise): (fix )(�) = lim(◦ )(�) (17) ∇���� ∇���� �∞ Consider the previous example with the self-root-graft operation. If we apply it one more time � →, the trail {� , � , � }, will be grafted onto the root of the remaining trail with the same root�subr (� outine → {� , � , � , � }), 5 2 3 1 1 7 1 2 3 but subsequent applications of have no efect. In that example, the limit exists � =and 2. We now show ���� that the limit always exists. Lemma 3.1. The ixpoint(fix )(�) exists for all � , and is reached in a inite number of steps. ���� Proof. Consider the grafting operation : by Equation 9, given two input trails, the result of the operation � ,...,�� is a single trail. By examining the irst case in Equation 16, we note that the resulting set is always smaller for this case, because we picked the trail � in a way that there is a set od trails �, which share the same root subroutine as � , which allows the grafting. Thus, the cardinalities of the trail sets in(◦ the sequence )(�) are strictly 0 ���� monotonically decreasing. Consequently, the second case must be eventually applied (because the trail-set size ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 17 �+1 � cannot be less than 1), so there is an � for which(◦ )(�) = (◦ )(�), which implies that the limit ∇ ∇ ���� ���� exists, and that the ixpoint is equal (◦ to )(�). □ ���� Lemma 3.2. Each trail(�, �,�) in(fix )(�) has a unique root subroutine. ∇���� Proof. By Equation 16, the ixpoint cannot be reached if there are remaining candidates � for grafting. As long as two trails(◦in )(�) share the root subroutine, the irst case applies, and there is a candidate � ∇���� 0 � �+1 � such that �(� ,(◦ )(�)) ≠ ∅, so (◦ )(�) ≠ (◦ )(�). □ ∇ ∇ ∇ 0 ���� ���� ���� Algorithm.Having deined the necessary machinery, we Algorithm 2:DetectHot Procedure can now formally and concisely describe the hot-code de- input :program call graph � , proileΠ tection algorithm that was outlined in the earlier example. output :hot roots � , trail set � The DetectHot procedure, shown in Algorithm 2, irst 1 � = InitialTrails(Π); picks a set of hot contexts from the proile Π, and con- 2 � = (fix∇ )(� ); ���� 0 verts them to a trail set � in line 1. The concrete steps for 3 � = ∅; this are abstracted in the procedurInitialTrails e . Since 4 while¬ DetectionDone(� , �) do the trails �incorrespond directly to proiles, it is usu- 5 � = TopTrail(� \ �); ally possible to graft some of them together, as seen in the 6 Γ = CallingContexts(�, Π, � ); previous example. This initial grafting repetitively picks 7 � = { �⊙ � : �∈ Γ, Accept(�⊙ �) }; �,Γ some trail from � , and grafts it onto the remaining trails 8 if� = ∅ then � = {�} ∪ � ; �,Γ (the self-root-grafting operation ). The initial-grafting ���� 9 else is represented with the operation fix in line 2, and ���� 10 � = � \{�}; it produces the trail�set . The algorithm then creates an 11 � = � ∪ � ; �,Γ empty trail set �, and proceeds as follows. As long as a 12 end termination condition DetectionDone is not met, the al- 13 end gorithm selects a trail � according to some policy TopTrail 14 � = { ���(����(�)) : � ∈ � }; in line 5, and calls a proce CallingContexts dure to iden- tify the setΓ of calling contexts that�call ��(����(�)) in line 6. The trail � is expanded along each of the calling conte � ∈ xts Γ to a new context � ⊙ �. The algorithm only keeps the expanded trails �⊙ � that pass the Accept predicate, thus forming the set of expanded trails � �,Γ (line 7). If the trail � set is empty, then this means that � could not be expanded further, so � is union-grafted �,Γ into the set of inal trails � in line 8, which prevents its further consideration. Otherwise, the � trail must bset e �,Γ union-grafted back into the trail � . T set o ensure that each trail � ∈ � refers to a unique metho�d��(����(�)), the algorithm must graft the trails whenever possible. The merging � andof � is thus represented with the �,Γ union-graft operation ∪. The set � of hot subroutines is derived fr � om in line 14. Symbol Name Meaning (Eq. 11) L� M Ordering of the set � Sequence of elements from set � , ordered by the total order���. ord (Eq. 13) � � Graft-to-all operation Operation that grafts the trail � to all candidate graft points �. in Grafts a subset� ⊆ � of trails fr�omto � wherever possible, (Eq. 15) � ∪ � Union-graft operation and then returns a union with the remaining trails � \ � . Picks a trail � from the trail �set , and grafts it to other trails (Eq. 16) ∇ � Self-root-graft operation ���� from� that have the same root subroutine. (Eq. 17) (fix )(�) Fixpoint of The limit of the repetitive application of the self-root-graft. ∇���� ∇���� Table 2. Summary of Key Symbols from Section 3.3 ACM Trans. Program. Lang. Syst. 18 • Vukasovic and Prokopec 3.4 Hot-Code-Detection Policies The code in Algorithm 2 includes several procedures that drive the behavior of hot-codeInitialTrails detection: , DetectionDone, TopTrail, CallingContexts, and Accept. A speciic combination of implementations of these procedures is callehot-co d a de-detection policy . Diferent policies result in diferent instantiations of the algorithm, and we show our choice next. In this section we explain the policy components, and we present the speciics of the key procedures in Appendix D.1 in order to facilitate the algorithm implementation. InitialTrails creates a set of initial trails from the Π.pr Woile e use a constant � to set the lower bound for the proile’s contribution to the total hotness of a program. The constant � is tuned on a set of benchmarks to achieve the best performance, as explained in Section 5.6.DetectionDone Next, is true once all trails�fr arom e inalized. This is ensured by our choice Accept of . CallingContexts procedure. The root of every trail represents the root subroutine of a compilation unit, which can be extended along a particular calling context. The set of all possible calling contexts can be determined by examining all the proile entries in the Π.pr Woiles e identify the subset Π| of proile entriesΠin that refer to callsite executions speciically. For a spe�ciic , the set trail callerProilesis determined as those entries from Π| that end with a subroutine � , which calls the subroutine root(�) in the call-graph � . � � The total amount of time spent in the code represented by the �trail is the sum of the time spent when that trail � is invoked from each of its calling contexts. When extending �, w the e w trail ould like to retain the extensions �⊙ � across those calling conte�xts such that a signiicant portion of the time is sp � when ent incalled from �. Note that the information about the amount of time spent in a trail when called from a particular calling context is not included in the prΠoile ś the proile only includes the execution counts individual of points in the pr.ogram Therefore, we need to somehow estimate the portion of the trail �’s hotness that belongs to a particular extension �⊙ �. For this reason, theCallingContext procedure additionally computes attenuation an factor � (�) ∈ [0, 1] of each context � = ⟨� , ... , � ⟩, which is an estimate of the portion �’s hotness of that is the result of being called 1 � from the calling conte �. The xt attenuation factor is calculated as a ratio of the hotness of one calling context � that calls root(�) and the hotness sum of all such contexts. Importantly, this is just an estimate based on the partially context-sensitive proiles. The hotnessℎ counts in the numerator andℎ in the denominator denote onlyhow many times the trail was calle , and d serve as a proxy forthe amount of time spent in those calls . Consider the following example. � (� ) = 1 �(� ) = � (� )·(�(� )+ �(� )) s s s ,s s 0 0 0 1 s 0 s s s 0 0 5 7 s s s 1 6 8 h h h �(� ) = � (� )·(�(� )+�(� )) 1 2 3 s ,s s ,s s ,s s ,s ,s 0 1 0 1 0 1 0 1 2 �(� ) = h � (� )=1 s ,s 1 s s 0 1 s 0 2 s 1 h 3 4 � (� ) = s s s ,s ,s 3 4 0 1 2 h +h +h 1 2 3 In the preceding igure, the trail � ← � → � (on the left) has the calling conte � xts → � , � → � and 3 2 4 0 1 5 6 � → � , with hotnessℎ , ℎ and ℎ , respectively. The attenuation factors of these diferent calling contexts of 7 8 1 2 3 the subroutine� are computed as the ratio of a calling-context hotness and the sum of the hotness of all three calling contexts. Hotness of a trail is computed by summing up the hotness of its breadcrumbs, and weighting them using the attentuation factors. Trail hotness.Hotter trails should generally have a greater likelihood of being considered for expansion, and should get expanded across more calling contexts.trail The hotnessis a function � : �(�) → R that maps a trail to a non-negative real value. It is deined as the recursive hotness sum of all the breadcrumbs in �, wher the etrail each subtree is weighted with the graft-point attenuation � Next, we explain the auxiliary functions � and �. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 19 Graft-point attenuation of a trail � is a function � : � → [0, 1] that maps each node to a real value between 0 and 1. The purpose of� is to partially decrease the hotness of some parts of the trail when it gets extended along a calling context. For the initially created trails, the attenuation factor is set to 1 to all the graft-point nodes. After the grafting operation � � is performed, the attenuation factor of the resulting trail graft points is inherited from the input trails. In another words, the attenuation factor of the root�of trail, the which is being grafted is set to the value of the graft point of the corresponding node of the target �. All trail the other attenuation factors in trail � are inherited from the input � trail. When a trail � is expanded using a calling conte �, thext algorithm computes the attenuation factor � (�) for that particular extension in CallingContext the procedure, as previously described. This is the attenuation factor for the � trail, root of while the attenuation factor for the root of the expanded trail is set to 1. Breadcrumb hotness of a trail � = (�, �,�) is a function � : � → N , which maps each node to its estimated � 0 count. Initally, all the nodes corresponding to the end of a calling context have the hotness ℎ fromset thetoproile entry the trail is constructed from. When expanding � trail with a calling �conte , nodes xt that originate from � inherit the original hotness, and all the nodes corresponding � have their to hotness set to 0. When grafting is performed, the hotness of the grafted nodes is added together where possible, and inherited otherwise. TopTrail predicate.To decide which trails are most promising, the algorithm relies on the hotness of the individual proiles. The trail� hotness induces a total order hotter on the set of all trails T, where the tie-breaker is the lexicographic order � and of � (see Equation 14): 1 2 � < � ≡ �(� ) > �(� ) ∨ (�(� ) = �(� ) ∧ � < � ) (18) 1 hotter 2 1 2 1 2 1 lex 2 The TopTrail procedure then simply takes the irst trail�fraccor om ding to thehot order. The Accept predicate.While our policy always works on the hottest trail, it is preferable to eventually process trails that are less hot, but smaller. For this reason, Accept the predicate must prevent further expansion of the hottest trail once the trail grows too large. To assess how large the trail is, we deine � that a metric sums the code sizes of all the subroutines in the trail. It is useful to restrict the amount of recursion in the trail. To achieve this, we deine�the thatfunction recursionDepth computes the sum of 2 of all the nodes in the trail, multiplied by a small, experimentally determined constant � . ��� Let the relative hotness be the hotness of the trail �(�) divided by the approximation of the total time spent in the program (i.e. the sum of all the hotness counts from the pr Π).oile The extended trail is accepted if its relative hotness decremented by the recursion penalty �(�), is larger than the threshold function that depends on the size of the trail �. 3.5 Inliner Modifications After the hot-code detection from Algorithm 2 produces the trail � that setcorresponds to hot compilation units, the compiler’s inlining algorithm, which creates the individual compilation units, can exploit the information in the trail�set . Some inlining algorithms maintain call-tree data a structure [33, 97, 114] (sometimes called inlining plan and inlining ),trewhile e others work directly on the call39 graph , 96, 104 [ , 109]. The decisions about expanding the compilation unit across the call graph or the call-tree data structure are often driven by cost-beneit analyses [33, 39, 45, 53, 62, 104]. While we speculate that the cost-beneit analysis of most inliners can be improved by using the hotness information in the trails, in this section we demonstrate how we augmented a concrete inlining algorithm that is used in the Graal compiler 97]. This [ inliner maintains inlining the tr data ee structure, which isinite a tree nested within some call�tr, ease deined by Equation 4. �(�) ≡ {(�, �) : |� | < ℵ ∧ � ⊆ � × � ∧∃� ∈ ℂ(�),(�, �) ⋖ �} (19) ACM Trans. Program. Lang. Syst. 20 • Vukasovic and Prokopec Symbol Name Meaning Set of proile entries. Proile entry is(a�,pair ℎ) of a Π Proile calling conte �xt= ℓ , ... , ℓ and its execution count ℎ. 1 � Π| Callsite proiles Subset of entries in Π that represent callsite executions. � Hotness threshold Value above which a hotness entry is considered hot. InitialTrails(Π) Initial-trails heuristic Creates an initial set of trails Π. for a proile DetectionDone(T, F) Termination heuristic Determines if the hot-code detection must terminate. Returns a set of proile entries frΠom| that invoke the callerProiles(�,Π,� ) Caller-proile set root subroutine of the trail � in the call graph � . Returns the calling contextscallerPr in oiles(�,Π,� ) (i.e. CallingContexts(�,Π,� ) Calling-context set the same proile entries, but without hotness). Estimated hotness percentage of a trail � when the trail � (�) Attenuation factor ℓ ,...,ℓ 1 � � is invoked from the calling conte ℓ , ...xt , ℓ . 1 � � (�) Graft-point attenuation Maps each trail node � to an attenuation value in [0, 1]. � (�) Breadcrumb hotness Maps each trail node � to the hotness of that node. �(�) Trail hotness Estimated hotness of the entire�.trail (Eq. 18) L� M Hotness-ordered trail set Sequence of trails fr�om , ordered by theℎ�����relation. hotter TopTrail(�) Top-trail heuristic Returns the hottest trail from the set�of . trails �(�) Trail size Code-size estimation for�the . trail �(�) Recursion penalty Recursion penalty for the�.trail Accept(�) Acceptance heuristic Decides whether to retain a�trail after expansion. Table 3. Summary of Key Symbols from Section 3.4 The inlining tree eis xpande (1) d until the inliner decides that a suiciently large part of the call tree is covered. After that, the inliner (2) decides which parts of the inlininginline tree will into d the becompilation unit. Finally, the inliner (3) optimizes the inlining tree by pruning some branches, i.e. it attempts to ind another inlining tree nested within the current one. These steps are repeated until a termination condition is satisied ś we summarize them in Algorithm 3. During the expansion phase, the inliner repetitively selects a leaf node of the inlining tree, and adds its child nodes. Algorithm 4 shows an individual inlining-tree expansion step ś starting from the root, it keeps descending to the child with the highest priority �, until inding some no � de that does not have children. If that leaf � ,...,� 1 � node does not have any callsites, then its priority � is−∞. Otherwise�, of a leaf node is deined as its beneit divided by code size, where the beneit correlates with the call frequency �.of Priority an inner node is equal to that of the child � with the largest priority �, decreased by a penalty function that depends on the size of the respective subtree. To ensure that less frequent callees that are closer to the root compilation unit are not overlooked, thepenalty term decreases the likelihood of exploring huge subtrees that have a high fr97 equency ]: [ −∞ �  � ∉ � � � �  � �+1   beneit(�) ⧸ � ∉ � ∧ �  � ∈ � � ,...,� ,� � � � � � (�, �, �) ≡ 1 � �+1 � �+1 GraalVM codeSize(�) (20) max � (� , �, �) − penalty(�) ��ℎ������ GraalVM � �� ∈�  � � where � = � � = (� , � ) � = (� , � ) � ,...,� � � � � 1 � The modiications that we describe in this section apply InlineHo to thet procedure from Algorithm 1. The InlineCold procedure corresponds to the unmodiied version of the inliner. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 21 Algorithm 4:Expand Step [97] Algorithm 3:GraalVM Inliner [97] input :program call graph � , entry-point� input :call graph(�, �), inlining�tree output :IR � of the root compilation unit output :expanded inlining�tree 1 � = ({� },∅); 1 � = ����(�, �) where � = (� , � ); � � � 2 while{� : �  � ∈ � } ≠ ∅ do 2 while¬ InliningDone(� , �) do � � � 3 � = arg max �(� ) y 3 � = Expand(� , �); �� ∈� � � 4 � = Inline(�); 4 end 5 � = Optimize(�); 5 � = �; � ,...,� 0 � 6 end 6 � = {� : �  � ∈ �}; � � ,...,� ,� � � 0 � �+1 � �+1 7 � = ����(� , � ) where � = (� , � ); 7 � = {�  � : �  � ∈ �}; � � � � � � ,...,� � ,...,� ,� � � 0 � 0 � �+1 � �+1 8 � = GetIR(� ); 8 � = � ∪ (� , � ); � � � Expansion modiications. The inliner has a limited budget for inlining-tree expansion, so inlining relies considerably on expanding the łmost beneicialž parts of the inlining tree. We therefore bias the priority function � so that the inlining-tree nodes that correspond to nodes of some trail are expanded with a higher likelihood. The rationale for this is that they are more likely to transitively invoke łhot code,ž which should be inlined into the root compilation unit. Our modiication deines a new priority � function , which multiplies the InlineHot default priority with an experimentally determine�d constant whenever the node in the inlining-tree can ����� be matched to some trail: � ∃(� , � ,� ) ∈ �, � ∈ � bonus � � � � ,...,� � � � � (� , �, �) ≡ � (� , �, �) · (21) InlineHot � ,...,� GraalVM � ,...,� 1 � 1 � 1 otherwise Due to the penalty term in the priority function � , the bonus merely biases the expansion around the GraalVM łhot codež represented by the trails, but does not completely prevent the exploration of the coldž ł callees. Budget modiications.When compiling hot compilation units, we change the parameters of the inliner to increase the code-size budget available for inlining. As described in97relate ], the dinliner work [ uses the following threshold function that can prevent expansion, depending on the total � of code thesize entire inlining tree (as deined by Equation 35): beneit(�) �(�)/� ⧸ ≥ � (22) codeSize(�) Next, the inliner uses the following threshold function to decide whether to inline a calle � e compilation unit into the root compilation unit of the call �, which tree is the caller �: of (codeSize(root(�))+codeSize(�))/� beneit(�) ⧸ ≥ � · 2 (23) codeSize(�) We experimentally tune the parameters �, � and � to increase the size of the hot compilation units and to 1 2 consequently improve performance on a set of programs, as described in Section 5.2. InlineCold modiications.The only change in the inlining for cold compilation units is that we prevent the inlining of subroutines in� the from set Algorithm 2, which were previously compiled as hot compilation units. The expansion priority of calls to subroutines � ∈ � is set to−∞: −∞ � ∈ � � ≡ (24) InlineCold � (� , �, �) ��ℎ������ GraalVM � ,...,� 1 � In addition, the Inline step from Algorithm 3 is modiied to never inline � a∈call � . to 3.6 Hot-Callee Classification ACM Trans. Program. Lang. Syst. 22 • Vukasovic and Prokopec After the compiler inlines some of the callees into a hot subroutine, there will Trails 3 generally exist some remaining callsites in the corresponding compilation unit. Some of these callees may be coldž ł and not beneicial for inlining, but s s 1 8 some of them may be łhotž callees that were not inlined due to insuicient budget. Such łhotž callees should be recursively compiled as hot compilation s s 4 7 units. TheIsHot procedure from Algorithm 1 needs to decide whether a given callee of the compilation unit should be placed onto the hot or onto Inlining tree the cold compilation queue. s s Consider the example in the adjacent igure, where an inlining tre5e is 7 shown with rectangles, and the trails are shown with circles.�The←trail � → � is matched against the root of the inlining tree, and the corresponding 3 8 nodes of the inlining tree are shaded in yellow. The non-matched (cold) parts of the inlining tree are shaded in white ś the node� is not matched to any node in the trail, but its�calle can bee matched to another trail 4 2 � ← � → � . We classify such callees as hot ś for example � do , if es not get inlined, it will be recursively 5 2 7 5 compiled as hot. The trail for the hot calle � e is determined with a combination of trail matching and trail cutting operations. � ,...,� 1 � First, we ind a matching trail � for in the trail-set � , and we then cut that trail at the subtree that corresponds � ,...,� 1 � to the call sequence � , ... , � . The trail-matching operation ↓ matches a node from the inlining tree, with a call 1 � sequence � , ... , � , ... , � , to a trail � from the trail�set , such that � contains the longest suix of that call sequence. 1 � � For the initial set of hot subroutines � from Algorithm 2, the association is straightforward, since �∈ � each corresponds to a trail � ∈ � . However, a hot call to a subroutine � may not have a corresponding trail ś for this reason, we implemented a trail-cutting operation. Given a breadcrumb � andtrail its node� , the trail-cut � ,...,� 1 � operation⊘ produces a new trail that consists only of the subtree starting � at. Deinitions and details of � ,...,� 1 � both operations are presented in Appendix D.2. The trail-matching and trail-cutting are illustrated in the following example. The longest trail-match in the set � for the calling conte⟨�xt , � , � ⟩ is the leftmost trail in the igure, because that trail contains the longest suix 5 3 1 of� , � , � . The resulting trail is then cut on the right side of the igur�e, at no , and de this yields the trail 5 3 1 � ,� ,� 3 1 2 � ← � → � . 5 2 7 s s s 3 2 3 3 s s 1 s s s s s 1 8 5 1 8 1 8 � � s ,s ,s s ,s ,s = = 5 3 1 3 1 2 s s s 2 4 s s s 2 3 2 2 s s 5 7 s s s s s s 1 7 s s 5 7 5 7 5 7 3.7 Parameter Summary In Table 5, we listed the key parameters � , � , and � , which the proposed algorithm introduces. Constant � ����� ��� is a limit that a proile’s hotness must exceed to be included in the initial set of hot proiles, compared to the overall hotness of the program. Constant � serves as a multiplier for calculating the recursion penalty of a ��� trail. The details of how we used these constants in the algorithm’s policy can be found in �Appendix D.1. ����� is a constant for multiplying a default inlining-tree-node priority for every node that can be matched to a trail, according to Equation 21. All these constants are tuned for the best performance on a set of benchmarks, and the results are presented in Section 5.6. Notably, since diferent compilers and inliners have diferent IR designs and enact diferent optimizations, their cost and beneit models difer, so we expect that the algorithm parameters need to be re-tuned for each speciic environment. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 23 Symbol Name Meaning (Eq. 19) �(�) Inlining tree Data structure maintained by the inliner for the pr�ogram . GraalVM node priority func-Function which calculates the node priority using heuristics in GraalVM (Eq. 20) tion GraalVM [97]. InlineHot node priority Function which increases an inlining-tree-node priority if it is InlineHot (Eq. 21) function marked as hot. InlineCold node priority Function which modiies an inlining-tree-node priority if it is InlineCold (Eq. 24) function marked as cold. Operation which inds a trail in the trail � containing set the � ↓ � Trail-matching operation � ,...,� ,...,� 1 � � longest suix of the call sequence � . � ,...,� ,...,� 1 � � Operation which produces a new trail that contains only a sub- �⊘ � Trail-cut operation � ,...,� 1 � tree of the� trail starting from the no � de . � ,...,� 1 � Table 4. Summary of Key Symbols from Sections 3.5 and 3.6 Symbol Name Meaning � Hotness threshold Value above which a hotness entry is considered hot. � Recursion constant Constant used for restricting the amount of recursion in a trail. ��� (Eq. 21) � Expansion bonus Bonus for expanding an inlining-tree node matched to a trail. ����� Table 5. Summary of the Key Introduced Parameters Symbol Name Meaning Parameter that impacts the amount of call-tree expansion, which (Eq. 22) � Expansion inertia base the inliner performs. Relative beneit coeicient Parameter driving the beneit threshold for deciding whether a (Eq. 23) method should be inlined. Parameter limiting the budget that the inliner has available for (Eq. 23) � Base target spending inlining. Table 6. Summary of the Existing Inliner Parameters in GraalVM This section also contains the key parameters already included in the inliner, and they are listed in Table 6. We tuned them to show that our algorithm does not show better performance only for a subset of the parameter values. As a result of the experiments, we chose the values which give us good performance, but we also demonstrate that our algorithm works well for the other parameter values. These results are presented in Section 5.2. 4 IMPLEMENTATION The algorithm presented in Section 3 was described on an abstract level, and it can be implemented in most concrete compilers. To evaluate the algorithm, we implemented it inside the ahead-of-time Graal compiler for the GraalVM Native Image 120 [ ], and applied it to concrete programs and benchmarks. More precisely, we modiied the compile queue within the existing compiler, added a phase to analyze the input proiles, and used it to improve the decisions of the existing inliner. We start with an overview of the existing compiler inside GraalVM and the existing proile-guided optimization support in GraalVM’s ahead-of-time compilation mode in Sections 4.1 and 4.2. Then, in Sections 4.3 and 4.4, we discuss the data structures and the details of our implementation. If the reader wishes to see an example execution of the proposed algorithm, Appendix A illustrates compilation of a metho mnemonics d from benchmark. ACM Trans. Program. Lang. Syst. 24 • Vukasovic and Prokopec 4.1 System Overview Ahead-of-time (AOT) compilation is a set of techniques for compiling and optimizing the entire program before the execution of the program begins. GraalVM Native Image 120] is [ an ahead-of-time compiler in GraalVM, in which we implemented the algorithm that is the subject of this paper. GraalVM Native Image compiles the input program to a platform-speciic executable, called native image (NI). The input to the Native Image is the set of class-iles that contain the Java byteco1de ] that [ represents the program, and the name of the method that is the program entry point. Just-in-time compilation (JIT) is a substantially diferent compi- lation paradigm, in which the compilation is performed during the 1 11 12 start P(0) C(null) execution of the program, and is done only selectively on a subset of methods. The execution of the program usually starts in the irst stage == C(EMPTY) 2 of the compiler, e.g. an interpreter. After the method gets invoked a if certain number of times, or after the total amount of the time spent in the method exceed a speciic threshold, that method is placed on new the compilation queue and eventually compiled. HotSp 95] isotone [ load invoke of the virtual machines that uses the JIT compilation approach. In the GraalVM ecosystem, both Native Image and HotSpot use merge Graal as the optimizing compiler. After the Graal compiler loads the phi bytecodes of the program, parses them, and creates the corresponding return intermediate representation (IR) 67],[it applies numerous optimization phases to the program IR. Graal is, in principle, an intraprocedural Fig. 4. Example Graal IR for theOptional. optimizing compiler ś every method of the program is parsed as a ofNullable method separate compilation unit, and all subsequent optimization phases are separately applied to each compilation unit. However, a single compilation unit may comprise several methods, because the compiler can decide to inline some of the callees. Graal IR. The intermediate representation in the Graal compiler is a directed graph data structure that simulta- neously models the control-low and datalow dependencies between individual execution 67], similar steps [ to the sea-of-nodes representation58[]. The preceding igure shows the corresponding Graal IR for the JDK 8 Optional.ofNullable method [18]. The method is deined as follows: <T> Optional <T> ofNullable (T x) { return x == null ? EMPTY : new Optional <>(x); } Inlining and node source positions. The Graal compiler transforms the aforementioned IR in a sequence of transformation phases, one of which performs inlining 97]. In the[ previousofNullable example, theinvoke node represented the constructor call, which merely assigns the parameter to one of the ields Optional of the object. Typical heuristics inline this constructor due to its96 small ], and the size resulting [ state of the IR is shown in the following igure. The invoke node that represents the Optional constructor call was replaced with the body of the constructor, which is in this case a single store node. We use this example to explain the conceptno of deasource position in Graal. The Java bytecode of each method is a linear list of instructions 75], each of[ which has a unique bytecode index (BCI) , which is the ofset of the instruction in bytes. For a particular method, BCIs start from zero and go up to the BCI of the last instruction. Every node in the IR is associated with the bytecode instruction that it was created from. Therefore, every node has a method-BCI pair that denotes where it came from. However, nodes can originate from callees that were inlined into the compilation unit, and for this reason, Graal assigns a listof method-BCI pairs to each node, which represents where the node was inlined from. This list is called the node source position . In the preceding example, the node source position of new the node isofNullable:7, because this particular node was not inlined (i.e., it comes from the root method of the compilation unit). The ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 25 node source position of the store node isofNullable:9,<init>:0, since that node was inlined from the call at ofNullable:9, and is the irst instruction in the constructor <init> of theOptional class. The calling context is the node source position ofinvoke the from which a particular node is inlined. store For the node in 11 12 start P(0) C(null) the exampleofNullable:9 , is its calling context. The term calling C(EMPTY) context is overloaded, because it also denotes the call stack that == exists during the program execution and which invokes the com- if pilation unit that corresponds to the top frame of the call stack ś ofNullable:7 to disambiguate, we say call stack when we mean the latter. new The build process in Native ImageImage-building . consists load store of several main steps: (1) points-to-analysis, which includes class ofNullable:9 initialization and heap snapshotting, (2) compilation, and (3) im- 6 <init>:0 merge age-heap writing 120 [ ]. The points-to analysis step determines the phi set of reachable classes and methods 113[], which is callehoste d thed return universe . The points-to analysis also initializes the static ields of some classes. The compilation step then, starting from the entry points, recursively compiles the methods from the hosted universe one-by-one, in a manner that corresponds precisely to lines 13-20 in Algorithm 1. Finally, the image-writing step creates a binary with the compiled code and the initial state of the heap (which comprises the objects that are transitively reachable from the static ields of the initialized classes). Extensions in this work: the compilation is separated into two rounds, the irst compiling hot methods, and the second compiling cold methods. 4.2 Overview of Profile-Guided Optimizations (PGO) in Native Image On HotSpot, the program is proiled while it is inter- preted, and before it is JIT-compile 15, d50[, 80, 122]. Points-To Image-Heap Compilation Since method inlining (which by deinition introduces Analysis Writing calling-context sensitivity into the compilation unit) is only performed during JIT compilation, the proiles col- lected by the interpreter are not context-sensitive ś the interpreter maintains the same set of proile counters for a particular method, regardless of who the caller is. In AOT compilation, however, the entire program is compiled before the program starts executing, and there is typically no interpreter available. For this reason, GraalVM Native Image supports two modes of compilation instrumentation ś image , in which the binary is instrumented with the code that collects the proiles, and optimization the image , in which the binary does not have any proiling code. The program is irst compiled into the instrumentation image, which is executed once to collect the proile information. The proile information is dumped to a ile when the instrumentation-image program exits. Then, the program is compiled into the optimization image, which optionally takes the ile with the proile information. This proile information is then used to guide the decisions in various compiler optimizations. Types of proiled events. Speciic instructions of interest in the proiled program earveents calle . To minimize d the performance overhead of proiling, most VMs track only those events that are considered useful in improving the efectiveness of compiler optimizations. GraalVM Native image collects proile information for three diferent types of events: • Method entries.Records the number of times that a metho�d is entered. The method� may be inlined into a calling conte � , xt in which case this event type represents method’s hotness within the calling context � . ACM Trans. Program. Lang. Syst. 26 • Vukasovic and Prokopec • Conditional branches.Records the number of times that each branch of a conditional if (or ana switch statement) was executed. Each branch of the conditional is associated with a bytecode index (BCI) within the method � , which may be inlined into a calling � . context • Virtual dispatches.Keeps an array of counters, each for one potential receiver type at the virtual callsite, and records the number of times that each concrete receiver type was invoked. The callsite is associated with a BCI in � , which may be inlined into a calling � . context Extensions in this work: the virtual-dispatch proile for each callsite in hot code is restricted to the callees that appear on the breadcrumb trail, instead of being taken directly from the input proile. Obtaining proiles.In Native Image, the proiling is based on instrumentation ś the IR of each compilation unit is modiied to include nodes that collect counts for the previously enumerated events. Each node that is inserted into the IR represents a sequence of instructions that updates the counter for the event associated with the corresponding node source position. Each node source position of a proiling node is mapped to a unique identiier, which is used as an index in a counter array. Since the node source position includes the calling context within the current compilation unit, the count associated with every event is context sensitive. Extensions in this work: partially context-sensitive proiles are efectively made longer using the proposed breadcrumb trails approximation. The Native Image developers decided not to use atomic counters in Native Image PGO. The rationale behind this decision was twofold: irst, the extensive measurements revealed that the errors introduced by non-atomic counters are small, while the overhead of atomic counters is considerable compared to non-atomic ones; and second, optimization decisions that are made based on counter values are in most cases heuristics, and thus approximate. Furthermore, non-atomic counters in Native Image may lose some updates, but cannot lose all of them ś every calling context that was executed in the instrumentation image always has a non-zero proile count. The associated calling contexts contain all the methods from the program traces. Finally, our goal was to compare our proposed technique against the existing PGO in Native Image without changing the instrumentation mechanism, so modifying the existing counter infrastructure was out of scope. The adjacent example shows the IR after the insertion of two prof-cond nodes (one for each branch followingifthe node 2), 11 12 start P(0) C(null) which represent increments of the counters 1468 and 1469, respec- 10 tively. In the later compilation phases, these nodes are replaced == with low-level memory loads and stores that increment the respec- if C(1469) C(1468) tive counter. The proiling nodes for event types such as virtual 14 15 dispatches also count the corresponding receiver types, and are prof-cond prof-cond lowered to code that maps the receiver type to its entry. Once the C(EMPTY) new instrumentation image of the program completes execution, the load values of these counters are dumped to the disk into a ile, which store is consumed by the optimization image. The proile format corresponds to the formal input of the algo- merge rithm, as described in Section 3. Each counter is associated with phi the node source position of the corresponding instrumented node. return The irst location in the node source position always corresponds to the root method of the compilation unit, and the last location is the method-BCI pair of the instruction that the instrumented node was parsed from. One of the main reasons that the Native Image implementers decided to use only partially context-sensitive proiles is that the collection has a relatively low performance overhead, and that the memory consumption of the counters is low. While this instrumentation contains the exact number of times that an event was executed in ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 27 a given partial calling context, its downside is that the partially contextual proiles can be polluted in compilation units that have many callers, because the proile counts are aggregated across all callers. This, in turn, leads to incorrect inlining decisions. The length of partial calling contexts can be increased by doing more inlining in the instrumentation image, but this "works" only to a certain degree, as we show in Section 5.5. Applying proiles.Native Image already relied on proile-guided optimizations (PGO) prior to our work, in the following manner. The nodes in the Graal IR are augmented with additional information, such as the probability that a particular branch is taken at a particular if node, or the probability of a particular receiver type appears at a particular invoke node. This information is calculated from the counts in the proiles, and (when present) is used to guide existing Graal optimizations with knowledge about the program’s execution. For example, branch probabilities are used to compute basic block frequencies that guide path duplication 88] and loop [ transformations, and receiver type probabilities are used in callsite devirtualization 78, 97]. In this section, [ we explain how the partially context-sensitive proiles are applied to the IR in Native Image. The bytecode-parsing phase, which constructs the IR of each method in the native-image program, is the irst phase in which the proiles are applied. During bytecode parsing, the proiles are applie context-insensitiv d in a e manner, because the IR of a particular method is parsed, and no inlining occurred so far. Inlining, a later phase in the pipeline, applies the proiles in a context-sensitive manner, with the purpose of helping the inliner make better decisions. The two main steps of the inlining phase in GraalVM, as explained in Section 3.5, are expansion and inlining. Native Image applies conte the xt-sensitive proiles during the expansion step of the inliner ś in each of the callee methods, the branch probabilities of if all nodes and the receiver-type probabilitiesinvoke of all nodes are computed using only those proile entries that match the calling context of the respective callee in the inlining tree, as explained next. Proile-application exampleConsider . the adjacent igure, where the proiles from the instrumentation run were applied to the com- 11 12 pilation unit ofNullable of the optimization image. The purple start P(0) C(null) node 13 denotes the probability of taking true thebranch at the true prob=99% == if node 2, which can be utilized by various optimizations. For if example, the inlining phase can now conclude that it is very un- C(EMPTY) likely that the constructor callinvoke at the node 5 in thefalse new branch will be called, so there is very little beneit from inlining it. load On the other hand, subsequent code-motion phases can decide to 5 invoke move the highly frequent load node 3 to the position before the if node 2, since speculative prefetching can result in a performance 6 merge phi improvement [65, 100]. Querying proiles.The optimization-image compilation needs to return map node source positions to execution counts. When the calling contexts within each compilation unit of the instrumentation image exactly correspond to the calling contexts of the optimization image, this mapping is trivial. However, the calling contexts generally difer between the instrumentation and the optimization image, due to diferent inlining decisions ś the reason for this is that the inlining decisions are driven by the proiling information. In Native Image, when querying the execution counts for the (shorter) node source position ℓ , . . . , ℓ , the rule 1 � is to add together the counts associated with all (longer or equal) node source positions ℓ , . . . , ℓ , . . . , ℓ (where 1 � � � may be equal to�, i.e. there is an exact match). The rationale for this is that all longer or equal calling contexts from the instrumentation image may correspond to the queried calling context. On the other hand, when a node source position ℓ , . . . , ℓ does not have an equal or longer match in the set of proiles, in Native Image, the rule is 1 � to add together all the proiles with shorter calling contexts. ACM Trans. Program. Lang. Syst. 28 • Vukasovic and Prokopec Notably, these two rules were chosen as approximations by the Native Image developers. Generally, global analyses of the call graph and the proile set can result in better approximation schemes, but that is outside of the scope of this work ś here, we outline how the existing proiling system works, and do not change the default proile-querying schemes when implementing our algorithm. Implementation inputs.The input to our implementation is the hosted universe that is produced by the points- to analysis step of the Native Image build (as explained in Section 4.1), represente HostedUniverse d with the class in Native Image; the set of entry-point methods of the program, each represented by HostedMethod the class; and the set of pairs consisting of a node-source-position and an integer (i.e. the PGO proile). This input closely corresponds to the input of Algorithm 1 from Section 3 ś notably, the hosted universe contains the call graph deined in Section 3.1, along with the set of reachable classes and their ields. 4.3 Data Structures for the Code Analysis The previous two sections gave an overview of GraalVM, Native Image and the existing proile-guided op- timizations within Native Image. In the rest of the sections, we focus on our contribution, and present our implementation of the new techniques proposed in the paper. In this section, we present the implementation of the main data structures that we use for the code analysis. To explain the implementation, written in the Java programming language, we deine the main ields of each of the data structures, and we show their most important methods. Data type Breadcrumb. Listing 3 shows the implementation of a breadcrumb, i.e. a node in an annotated breadcrumb trail class Breadcrumb { as deined by Equation 7. The node corresponds to a single HostedMethod method ; Map < Integer , Breadcrumb []> callsites ; subroutine in the program (stored in the ield method). It Breadcrumb parent ; contains a reference to a parent node (ield parent), which GraftPoint graftPoint ; represents the caller of the node’s subroutine in a given class GraftPoint { trail. The callsites map matches a bytecode index of each double attenuation ; callsite in the node’s method to the list of the nodes corre- sponding to the methods that can be invoked at the callsite. Listing 3. Breadcrumb Data Type The rationale for having the list is that each bytecode index may represent a virtual call, which can dispatch to more than one method. Each breadcrumb has a non-null GraftPoint object if that breadcrumb represents a point for a grafting operation, as explained in SectionGraftPoint 3.2. The object contains theattenuation ield, which models thegraft-point attenuation function of the associated trail, as formally explained in the deinition in the Appendix D.1. Data type Trail. In Listing 4, we present the concrete implementation of a breadcrumb-trail data type, which was formally deined by Equation 7 for annotated trails, in Section 3.2. A trail is a tree that consists of breadcrumb nodes. The root breadcrumbroot (ield ) corresponds to the method of the corresponding compilation unit. Every other breadcrumb has exactly one parent, and the arbitrary number of children (Listing 3). A trail contains agrafts mapping from methods to all the breadcrumbs in the trail that correspond to the respective method and that haveGraftPoint objects. This map is used to optimize the trail-grafting operation deined by Equation 9. Finally, to model various trail-related functions deined in Section 3, a Metrics object is associated with each trail. This object containshotness the totalield, which represents the hotness function �(�) from Equation 34; the size ield, which represents the �(�) size function from Equation 35; and the recursion ield, which maps each method to its greatest recursive depth in the respective trail, and which is used to implement the penalty �(�) from Equation 36. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 29 Listing 4 also contains methods that implement the three main operations deined on trails. These operations are already formally deined in the Section 3.2. Metho createInitial d conceptually corresponds to the operation (∅,∅,∅) ⊙ ⟨ℓ , . . . , ℓ ⟩ of extending an empty trail with a calling context, as deined by Equation 8. It takes a 1 � Profile object (consisting of a calling-context and the corresponding value count ), as an input; its output is a new trail object, in which each breadcrumb coincides with a location from the input calling-context. The proile count is used for the initial hotness metrics of the created trail. Trail size and recursion depth are computed from the context input. The root of the resulting trail is a new graft point attenuation with the 1.0. Method expand performs the expansion op- eration onthis trail object, and implements class Trail { the ⊙ operation from Equation 8. The profile Breadcrumb root ; Map < HostedMethod , Breadcrumb []> grafts ; argument of the method contains the context Metrics metrics ; for expansion, and the proile count of that con- text. For each location in the context we create a static Trail createInitial ( Profile profile ); Trail expand ( Profile profile ); new breadcrumb, and update grafts similarly Trail graft ( Trail graftee ); to the construction of a new trail. The graft method implements the grafting class Metrics { long hotness ; operation from Equation 9 ś it grafts the input int size ; trail graftee ( ) onto this trail. The grafting can Map < HostedMethod , Integer > recursion ; only occur on those graft-point breadcrumbs class Profile { from the target trail this whose method corre- Location [] context ; sponds to the root method of thegraftee trail long value ; ś the grafts map allows eiciently retrieving class Location { this subset. For this reason, the grafting of the HostedMethod method ; same graftee can occur more than once within int bci; a single trail. For each graft point, graftee the trail is copied and attached to the respective Listing 4. Trail Data Type graft point. The metrics of the resulting trail are updated with the metrics of the grafted trail. The total hotness of the grafted trail is complemented with the hotness graftee of themultiplied with the attenuation of the graft point where the grafting happened, as per Equation 34. The remaining two metrics, size and recursion, are updated in a similar manner that ensures the Equations 35 and 36 are satisied. The TrailSet data structure. During the execution of the algorithm in Listing DetectionDone 2, the call in line 4, the TopTrail call in line 5, the addition of the curr � ent to the trail inalized set � in line 8, removal of the current trail � from the set� in line 10, and the union-graft operation in line 11 are executed multiple times. Using a naive set encoding, each of these operations would � (take �) computational steps, wher�eis the total number of trails in the set. To reduce their computational overhead, the implementation TrailSet uses the data structure shown in Listing 5. The TrailSet contains a priority queue, a hash-set offinalized trails, andcandidates a hash-map that maps each method to a set of trails that contain that method in at least one graft-point. The non-inalized trails are in the queue, and inalized trails are in finalized the hash-set, so in the notation of Listing � ≡2,queue∪ finalized and � ≡ finalized. The TrailSet data structure includes several methods. The isFinalized method checks if the queue is empty, which efectively executes DetectionDone the policy from Equation 31 � (in 1) time. ThepopHottest method uses the queue to extract the hottest trail �in(log�) time, and is used to implementTopTrail the policy (the ordering is determined by hotness the metric of the trails, as per Equation 34).candidates The allows inding all candidate graft points in all � (�trails ) time,in where� is the size of the resulting set, so the overall ACM Trans. Program. Lang. Syst. 30 • Vukasovic and Prokopec computational time of union-grafting ∪ (as deined by Equation 15) only depends on the size of the resulting trails. The finalized hash-set is used to extract the inal set of trails � fr (set om Listing 2). 4.4 Implementation Details The preceding sections showed how the imple- mentation of the algorithm in Native Image cor- class TrailSet { responds to the formalization from Section 3, PriorityQueue <Trail > queue ; HashSet <Trail > finalized ; but left out details such as how the hotness of HashMap < HostedMethod , Set <Trail >> candidates ; a calling context is computed, and how the set of calling contexts is determined (i.e Call- . the boolean isFinalized (); Trail popHottest (); ingContexts policy). We now show how our int unionGraft ( Trail graftee ); implementation computes the hotness of virtual void graftToRoots ( Trail trail ); and direct callsites, and how it estimates the hot- ness value of the individual breadcrumbs. Finally, Listing 5. TrailSet Data Type we show how to determine the calling contexts and the attenuation values of each method. Determining the hotness of virtual callsites. For each calling context ending with a virtual call, Native Image PGO data maps every concrete method to the invocation count of that method: �(ℓ . . . ℓ ) = {(�, �) : �∈ implementations (target(ℓ ))} (25) 1 � � Above, the target(ℓ ) is the base method for the dispatch at the virtual callsite ℓ , and implementations is a function � � that returns the set of methods that implement the base method. This proile entry has two interpretations, depending on when it is used. When creating a set of initial trails, a breadcrumb that gets created from a virtual call has its hotness increased by the sum of the invocation counts of all the possible concrete methods (because all of them contribute to the hotness of the trail): ℎ = � (26) ℓ ,...,ℓ 1 � (�,�)∈�(ℓ ...ℓ ) 1 � When extending a breadcrumb trail rooted at a subroutine � with a calling context that ends with a virtual call, the invocation count that contributes to the hotness is the count for the metho �: d ℎ = � such that (�, �) ∈ �(ℓ , . . . , ℓ ) (27) ℓ ,...,ℓ |� 1 � 1 � Thus, when creating the initial set of trails in line 1 of Listing 2, Equation 26 determines the hotness of the callsite that is a virtual call. When extending the top trail in line 7 of Listing 2, Equation 27 determines the hotness of the callsite that represents a virtual call. Example. To illustrate the preceding equations, consider the run- ning example from Listing 1, and its calling foreach:3 context hotness=N F.apply hotness=N +N in the adjacent igure, which ends with a virtualapply call. to F.apply G.apply F.apply The apply is a base method, and its concrete implementations are F.apply and G.apply. If this context is used to create an foreach:3 foreach:3 initial trail, then bF.apply oth the and the G.apply invocation Initial trail creation Trail extension counts contribute to hotness. However, if a trail that consists of a single breadcrumb F.apply is extended with its calling context foreach:3, then onlyF.apply’s invocation count contributes to hotness, because G.apply is not invoked in the extended trail. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 31 Determining the hotness of direct callsites. Unlike the virtual callsites, the direct callsites do not have the invocation-count records in Native Image PGO. The hotness of a direct call atℓ lo in cation the calling context ℓ , . . . , ℓ , ℓ must be computed from the branch probabilities of the subroutine � that corresponds to 1 �−1 � � the last location ℓ of the calling context. To do this, we irst extract the Π set of the proile entries ℓ ,...,ℓ ,� |� 1 �−1 � ′ ′ ′ ℓ , . . . , ℓ , ℓ that end with a location ℓ that is inside the subroutine � , such that ℓ is the location of a branch 1 �−1 � � � � instruction. We then use the ControlFlowGraph class of the Graal compiler [13] to create a control-low graph of the subroutine � , in which the basic blo � -rckelative frequencies are computed using the branch execution � � counts fromΠ . The � -relative frequency of the basic block that contains the dir ℓ eis ct call then multiplied � |� � � with the invocation count� of to obtain the count in the respective calling-context: ℎ = � · �(��� (� , Π ), ℓ ) (28) ℓ ,...,ℓ ,ℓ |� ℓ ,...,ℓ |� � ℓ ,...,ℓ ,� |� � 1 �−1 � 1 �−1 � 1 �−1 � Above, ��� returns the control-low graph of the subroutine � for the branch proiles Π , � retrieves the � � |� � -entry-point-relative frequency of the basic block that contains theℓlo in cation the given control-low graph, � � and � is the number of times that the metho � dis entered from the calling conte ℓ , .xt . . , ℓ , which ℓ ,...,ℓ |� � 1 �−1 1 �−1 � ends with a call�to . This hotness value is used both when creating an initial set of trails, and when extending existing trails. Example. To illustrate Equation 28, consider the running exam- ple from Listing 1 again, and its calling main:7,min:13 context , Location of the direct call foreach which ends with a direct call foreach to . To compute the hot- to foreach in min ness of the direct call foreach to at main:7,min:13, we extract min:13 min:.. the set of branch proiles Π that correspond to call- main:7,min|� main:7 min:.. min:.. ing contexts of the form main:7,min:X where min:X is any min:.. main:7 main:7 main:7 location in min. The branch proiles in Π are then main:7,min|� min CFG used to create a control-low graph of min, and a mapping from main:7,min main:7|min main:7 basic blocks to their frequencies relative to the entry point to min. We use this mapping to obtain min the-relative frequency κ =N ⋅f(CFG(min, Π ), min:13) main:7,min:13 main:7|min main:7,min �(��� (min, Π ), min:13) of the basic block that con- main:7,min|� tains the location min:13 of the direct call, and multiply it with the number of times � that the method min was entered frommain:7. The result is the hotness of the main:7|min direct callmain:7,min:13 at . Estimating the attenuation of a calling context. As we have just previously shown, in our implementation, direct calls are not represented in the proiles, so the attenuation-factor calculation, deined in Equation 33, must be modiied to include those direct calls in the denominator: ℓ ,...,ℓ |� 1 � � (�) ≡ Í Í (29) ℓ ,...,ℓ 1 � ℎ + ℎ �|� �|� �∈directCallers(�) (�,ℎ )∈callerProiles(�) �|� Above, the denominator is the sum of the hotnesses ℎ of contexts� that directly call � (as per Equation 28), �|� and the hotnesses ℎ of contexts� that indirectly call � (as per Equation 27). The direct-call hotness and �|� attenuation-factor calculations are cached to decrease the overhead. Determining the calling contexts. To compute the set directCallers(�), our implementation preprocesses the IR of the methods in the HostedUniverse, and creates a mapping from each method to the list of its callsites ś this callee-to-callsite table contains both the direct and the virtual callsites. The mapping is also used to implement the CallingContexts policy from Section 3.4. ACM Trans. Program. Lang. Syst. 32 • Vukasovic and Prokopec 5 EVALUATION The main objective of the evaluation is to compare the performance of the proposed ahead-of-time inlining and compilation-scheduling algorithm with the existing state-of-the-art inliner that is97use ] (Se d in ction GraalVM [ 5.1). To demonstrate that the comparison is fair, we inspect a range of parameters that afect inlining ś for both algorithms, we ind the parameter values that give the best possible performance (Section 5.2). Furthermore, the evaluation shows that the new inlining algorithm achieves improved performance with a minimal compiled-code size increase (Section 5.3). To characterize how the diferent components of the algorithm afect peak performance of compiled programs, we then analyze the impact of those diferent algorithm components. In Section 5.5, we evaluate how the average length of the partial contexts correlates with the peak performance of compiled programs. Then, in Section 5.6, we show how heuristics such as the inlining-budget boand ost the trail expansion formally deined in Section 3.2 afect the peak performance, and how we tuned the threshold for the initial set of hot contexts. In Section 5.7, we explain the performance diferences between ahead-of-time and just-in-time compilation with GraalVM, and we demonstrate that some of the diferences are not due to the inlining decisions. Appendix B contains a case-study, in which we explain how our proposed inlining algorithm deals with the problems that were described in Section 2 on the example of a lame graphmnemonics of the benchmark. Experimental setup and methodology.Benchmarking was conducted on an Intel Xeon E5-2699v3 CPU with 18 cores and hy- Benchmark NI Iterations JVM Iterations perthreading, with 264 GB main memory and tmpfs ile system, h2 10 16 running Oracle Linux Server release 6.10. During the experi- fj-kmeans 20 40 ments, turbo boost was disabled and we set the frequency of mnemonics 20 60 all CPU cores to 2.3GHz to eliminate the efects of dynamic fre- par-mnemonics 20 60 quency scaling. All experiments were conducted as follows. For philosophers 15 30 each data point, we did 5 separate measurements in diferent reactors 10 10 process instances, running diferent GraalVM Native Image (Na- rx-scrabble 80 150 tive Image 20.3.0-dev (Java 8, revision: 7955c628b5c) with the scala-stm-bench7 30 60 default garbage collector) conigurations, or JVM (depending scrabble 60 250 on the speciic experiment). Within each process instance, we apparat 10 20 repeatedly executed the benchmark for a predeined number of kiama 40 120 repetitions � , where � was selected on a per-benchmark basis to scalac 40 120 ensure that the steady state is reached before 60% repetitions are scaladoc 40 120 completed. We considered the benchmark steady once it ran for scalap 120 250 at least 20 seconds, and after the coeicient of variance reaches scalariform 40 120 a threshold 74 [ ]. Warmup time for GraalVM Native Image is tmt 12 16 shorter than the warmup time on JVM. There are only several initialization steps of the image heap executed at runtime, before Table 7. Number Of Iterations Per Benchmark the main method of the benchmark is invoke 120 d].[ Figure 5 demonstrates that a benchmark’s running time becomes stable after only a couple of iterations. The number of repetitions of each benchmark for Native Image and JVM is shown in Table 7. We then computed the average execution times across the last 40% repetitions of all 5 measurements. In the results, we also show the standard deviation, except when presenting the impact on the code size (where the results were stable, and the standard deviation was insigniicant). Workloads. We used 16 benchmarks from DaCapo [46], Scalabench108 [ ], and Renaissance99 [ ] benchmarking suites that Native Image was capable of compiling. A subset of benchmarks from Renaissance mnemonics suite,( par-mnemonics, and scrabble) on which we performed the analysis conduct the data manipulation using Java 8 ACM Trans. Program. Lang. Syst. 30 40 20 60 26 39 19 59 25 35 18 21 31 17 20 30 16 16 21 15 15 20 14 11 11 11 35 10 10 10 9 9 9 5 5 5 4 4 4 3 3 3 2 2 2 2 1 1 1 1 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 33 time (ms) 7,000 fj-kmeans 6,000 5,000 4,000 3,000 2,000 1,000 iterations → time (ms) kiama iterations → time (ms) 8,000 mnemonics 6,000 4,000 2,000 iterations → time (ms) scrabble iterations → Fig. 5. Warmup Curves on Native Image Streams. The rx-scrabble benchmark solves the same problem as does the scrabble benchmark but relies on the RxJava framework to do so. Thephilosophers benchmark solves the dining philosophers concurrency problem using the ScalaSTM framework, which is also usedscala for the -stm-bench7 workload. Thereactors benchmark consists of a message-passing workload, while fj-kmeans the benchmark performs K-means algorithm using the Fork/Join framework. DaCapo benchmark h2 executes a set of database transactions. The apparat benchmark from the Scalabench suite optimizes iles with speciic extensions, kiama consists and of a language-processing workload. Thescalac, scaladoc, and scalap benchmarks represent the Scala compiler, the Scala documentation generator, and the decoder for the pickled classile information, respectiv scalariform ely. The benchmark is a code formatter for programs written in Scala,tmt andembodies a tool for the unlabeled-code analysis. 5.1 Comparison with Other VMs and Inlining Algorithms In the main experiment, we compare the performance of the ive coniguration runs. Three of them represent the native-image runs default-e ( e, pgo-ee, pgo-aot-inline-e ), ewhile the remaining two conigurations stand for the HotSpot runs (graalvm-ee-jit , c2-jit). The default-eeconiguration does not include any proile-guided optimizations ACM Trans. Program. Lang. Syst. 34 • Vukasovic and Prokopec Benchmark Default PGO PGO-AOT-Inline GraalVM-JIT C2-JIT h2 13348 ms 10200 ms 10496 ms 6526 ms 6464 ms fj-kmeans 4709 ms 4493 ms 4456 ms 1824 ms 1919 ms mnemonics 9065 ms 5812 ms 4215 ms 2723 ms 6048 ms par-mnemonics 8329 ms 5401 ms 3988 ms 2295 ms 5111 ms philosophers 23889 ms 23056 ms 23010 ms 16320 ms 5809 ms reactors 35213 ms 31133 ms 31104 ms 17985 ms 20914 ms rx-scrabble 406 ms 335 ms 320 ms 291 ms 330 ms scala-stm-bench7 3812 ms 3089 ms 1814 ms 1603 ms 1480 ms scrabble 87 ms 63 ms 49 ms 43 ms 144 ms apparat 13283 ms 8133 ms 8374 ms 5526 ms 9860 ms kiama 400 ms 342 ms 313 ms 210 ms 287 ms scalac 1539 ms 1206 ms 1174 ms 1009 ms 1241 ms scaladoc 1312 ms 1011 ms 946 ms 855 ms 1180 ms scalap 189 ms 159 ms 155 ms 107 ms 128 ms scalariform 544 ms 463 ms 461 ms 345 ms 458 ms tmt 17875 ms 10159 ms 10108 ms 7025 ms 10970 ms Table 8. Benchmark Running Time (PGO), pgo-ee uses the existing proile-guided optimizations of Native Image (described in Sepgo- ction 4.1), and aot-inline-euses e our new proile-driven compilation-scheduling and inlining algorithm on top of the existing proile-guided optimizations of Native Image. In this experiment, we used the ixed values of the inlining parameters in all of the conigurations. The fourth coniguration graalvm-ee-jitrepresents HotSpot JVM that uses the the Graal Enterprise Edition compiler in JIT mode and the ifth coniguration c2-jitassumes HotSpot JVM using the default JIT server (C2) compiler. The results of all ive conigurations are shown in Table 8, such that each column represents the results of one coniguration in the followingdefault-e order: e, pgo-ee, pgo-aot-inline-e , graalvm-e e e-jit , and c2-jit . Compared to the default-eeconiguration, the proposed algorithm brings improvements betw−een 55% 10in 14 benchmarks, and in two benchmarks, the improvements are less than 10%. The diference betweenpgo-ee and pgo-aot-inline-econigurations e is more relevant, since it directly shows impact of our new inliner compared to the previous use of the proiles. This is why we single out these two conigurations, and present their results also in Figure 6. The x-axis shows the benchmarks on which we conducted the main experiment. The plot contains two bars per benchmark, and each bar represents the results of a benchmark run with one of the two conigurations. All performance results are normalized against the pgo-ee coniguration and presented on the y-axis. The proposed algorithm has the best improvements on the benchmarks scala-stm-bench7, mnemonics, par-mnemonics, and scrabble, improving their runtime by about 40%, 27%, 26%, and 22%, respectively. The kiama and scaladoc benchmarks are improved in the range of−510%, while the range of improvementrx-scrabble for , scalac, and scalap benchmarks is between .25% and 5%. Five benchmarks show the improvement up to 1%, and in two benchmarks h2( and apparat) we observed a slowdown of less than 3%. ACM Trans. Program. Lang. Syst. 10108 ms 10159 ms 461 ms 463 ms 155 ms 159 ms 946 ms 1011 ms 1174 ms 1206 ms 313 ms 342 ms 8374 ms 8133 ms 49 ms 63 ms 1814 ms 3089 ms 320 ms 335 ms 31104 ms 31133 ms 23010 ms 23056 ms 3988 ms 5401 ms 4215 ms 5812 ms 4456 ms 4493 ms 10496 ms 10200 ms tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 35 pgo-ee pgo-aot-inline-ee normalized time 1.000 0.900 0.800 0.700 0.600 0.500 Fig. 6. Benchmark Running Time (Lower Is Beter) 5.2 Impact of the Inlining Parameters on Performance In order to make sure that the performance of the conigurations is fairly measured and compared, we ran the experiments with diferent parameters with an impact on the expansion and inlining during a method compilation and analyzed the results. In this paper, we refer to the procedure of searching for the best inliner parameter values as tuning . Inliner tuning is an iterative search process whose goal is to ind the combination of the parameters that leads to the best peak performance of the programs compiled with that inliner. Tuning of the Inlining Parameters. The tuning process is conducted on parameters �, � and � from Equa- 1 2 tions 22 and 23. These parameters directly impact the amount of inlining in compilation expansion units inertia ś base-value � drives the amount of call-tree exploration that the inliner performs, relativ while e beneit coeicient � and base target spending� drive the beneit threshold for deciding whether a method should be inlined, efectively limiting the budget that the inliner has available97 for ]. The inlining inliner[explores a larger part of the call tree for higher values�of , and tends to make larger compilation units for smaller�values and larger of values �of. 1 2 We tuned the parameters �, � and � separately, as follows. For the tuning of each parameter �, we irst set the 1 2 value of all the other parameters to their default values, which were previously tuned for the existing Graal’s inliner 97].[We then used a variant of the simplex algorithm 25, 61][to determine the range in which the optimal value of the currently-tuned parameter � is, keeping all the other parameters locked. Starting from the initial value� , we explored the values � ± �· 2 at each step �, until inding a range with an inlection point, that is 0 0 � � � [� − �· 2 , � + �· 2 ] such that exists� for which � ± �· 2 has a better itness value than the boundaries of the 0 0 0 range. For the itness, we used the geometric mean across all benchmarks. Then, we divided that range into 10 to 15 equidistant steps, and searched for the optimal itness within these steps. The itness on individual benchmarks for the parameter �, while all other parameter values are locked, can be seen on the x-axis of Figure 7. We note that the process of tuning the parameters individually could be improved by multidimensional tuning of all the parameters, but we note that we had to build the native images of all the benchmarks for every datapoint (both the instrumentation and the optimized image), and simultaneous multi-parameter tuning would be much more expensive (it exceeded the amount of machine time available to us). ACM Trans. Program. Lang. Syst. 36 • Vukasovic and Prokopec Fig. 7. Tuning Results forExpansion-Inertia the Base Value Parameter (pgo-aot-inline-ee (×) vs pgo-ee (◦))(Lower Is Beter) The process of tuning is performed using the same methodology and setup described in the begining of Section 5. For each value of the parameter we performed 5 separate measurements in diferent process instances, running the two main GraalVM Native Image conigurations pgo-ee (and pgo-aot-inline-e ). eBased on this tuning procedure, we chose the values� = 550, � = 0.0002, and � = 300 as defaults for our modiied inliner. 1 2 Expansion-Inertia Base ValueThis . parameter directly afects the amount of the call tree that gets explored before the inliner decides which parts of the explored call tree must be inlined, and corresponds � to the value from Equation 22. We found that this parameter has the most signiicant impact on the performance of the inliner. In what follows, we show the efect of this parameter onpgo-e the e and the pgo-aot-inline-econigurations. e Each plot in Figure 7 compares the performance of one of benchmarks for the two main run conigurations across the interesting range of parameters. The x-axis represents the values of the expansion-inertia base value, while the y-axis show the running time of the benchmark in the corresponding plot. The running time is expressed in milliseconds. We analyzed these plots to determine the best choice for the default parameter value. For the majority of the benchmarks, both conigurations achieve the best performance when the parameter is between 400 and 550, with a few benchmarks achieving better performance between 1000 and 1300. The new inliner achieves better performance for all parameter values on 11 benchmarks, rea onctors it achieves better performance for most parameter values, on apparat, fj-kmeans and philosophers achieves similar performance across all parameter values, and is strictly worse h2on . Figure 8 compares the best performance for some parameter value, chosen separately for each of the two conigurations (i.e. the result of tuning each inliner on each benchmark separately). The diferent benchmarks are shown on the x-axis, and the normalized running time is shown on the y-axis (a lower value means better ACM Trans. Program. Lang. Syst. 9974 ms 10194 ms 455 ms 468 ms 155 ms 160 ms 940 ms 1000 ms 1170 ms 1173 ms 310 ms 331 ms 8284 ms 8208 ms 49 ms 56 ms 1825 ms 3031 ms 318 ms 334 ms 28041 ms 30243 ms 22921 ms 22903 ms 3861 ms 5376 ms 4230 ms 5419 ms 4423 ms 4426 ms 10466 ms 10001 ms tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 37 pgo-ee pgo-aot-inline-ee normalized time 1.050 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 Fig. 8. Running Time for Per-Benchmark-Optimal Expansion-Inertia Base Values (Lower Is Beter) performance). The reference value.01is thepgo-ee coniguration, which does not use our new compilation and inlining policy pgo-aot-inline-e . The coniguration e (the proposed inliner) achieves better peak performance on the 11 benchmarks, and a similar performance on 3 benchmarks. These individually tuned results are relevant for AOT compilation, since oline compilation of diferent programs allows tuning the parameters for each program independently (this is less applicable to online, JIT compilations). 5.3 Impact on the Compiled-Code Size We next demonstrate that the previously shown performance improvements incur an acceptable increase in compiled-code size. The goal is to validate that increasing the budget only for the hot compilation units does not signiicantly impact the compiled-code size, as argued in Section 3. Figure 9 compares the compiled-code size with the pgo-aot-inline-ee coniguration against the compiled-code size with pgo-e thee coniguration. We also compare the proposed algorithm against the approach of globally increase the inlining budget for all the compilation units (i.e. not just the hot ones), which is represented by pgo-enhance the d-inlining-budget-e coniguration. e The x-axis shows the benchmarks, and the y-axis shows the compiled-code size. Each benchmark is associated with one bar for each coniguration. The results are normalized against pgo-eethe coniguration, which has the least amount of inlining. With our new inliner, the compiled-code size is increased.in 8% on thethe range from 0 par-mnemonics benchmark, up to 9% on rx-scrabble, compared to the pgo-ee. However, for 10 out of the 16 benchmarks, the size is increased only up.5% to. 2When increasing the inlining budget globally, the size-increase goes up to 2.5×. The smallest increasepgo-enhance for d-inlining-budget is around 9% for par-mnemonics, for which we witnessed the lowest size-increase pgo-aot-inline-e for ase well. However, the average size-increase forpgo-enhanced-inlining-budget coniguration is approximately ×, which 2 we consider large. We conclude that the size increase of .8 0− 9% in the case of the pgo-aot-inline-econiguration e (the proposed algorithm) is not signiicant, and is acceptable in practice. ACM Trans. Program. Lang. Syst. 16.3 MB 8.8 MB 8.6 MB 26.9 MB 11.2 MB 10.6 MB 15.2 MB 7.9 MB 7.7 MB 61.8 MB 34.4 MB 34.1 MB 74.9 MB 38.6 MB 38.3 MB 14.8 MB 8.5 MB 8.2 MB 24.1 MB 13.0 MB 12.6 MB 11.1 MB 6.9 MB 6.8 MB 13.9 MB 8.1 MB 8.0 MB 12.8 MB 8.0 MB 7.3 MB 14.1 MB 8.6 MB 8.3 MB 11.1 MB 7.0 MB 6.9 MB 7.4 MB 6.8 MB 6.8 MB 10.2 MB 6.7 MB 6.6 MB 10.2 MB 6.6 MB 6.5 MB 21.6 MB 12.9 MB 12.4 MB tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 38 • Vukasovic and Prokopec pgo-ee pgo-aot-inline-ee normalized size pgo-enhanced-inlining-budget 2.500 1.900 1.700 1.500 1.300 1.200 1.100 1.000 0.900 Fig. 9. Compiled-Code Size (Lower Is Beter) 5.4 Impact on the Compile Time In this section, we present the impact of our algorithm on the compile time. Even though the compilation is performed ahead-of-time, and it is not crucial to keep the compilation overhead low, we demonstrate that the overhead is reasonable. Figure 10 compares the compilation time pgo-aot-inline-e for coniguration e against the compilation timepgo-e fore coniguration. The x-axis contains the benchmarks, and the y-axis shows the normalized compilation time. Each bar represents a compilation time of a benchmark ran with a speciic coniguration. The results are normalized against pgo-e the e coniguration. Our inlining algorithm increases the time of the compilation up to 23%, as observed on the exampleapp ofara thet benchmark. For 12 out of the 16 benchmarks, compile time is increased in range.8% from to 10%. 2 5.5 Impact of Context Length on Performance One of the aims of the proposed algorithm is to utilize context-sensitive proiling information to improve inlining decisions. Context length is the number of locations in the calling-context of a proile entry. Longer contexts usually result in more precise proiling information. By varying the average context length of the input proiles, we show that there exists a dependency between the context length, and the performance of the new inliner. The context lengths were varied by limiting the inlining depth in the instrumentation image, and simultaneously boosting the inlining budget. For each benchmark, the depth was varied until boosting the inlining budget no longer resulted in longer average context lengths (the limit on the average context length eventually occurs because virtual calls cannot be inlined in the instrumentation image). Figure 11 shows the subset of benchmarks on which we observed a noticeable impact of varying the context lengths. These analysis showed less efect on the rest of the benchmarks. The plots contain the performance data for the average context-length in the range from 1 up to the longest average context length we provided from the partial contextual information (3-4 depending on the benchmark). appara The t and scala-stm-bench7 benchmarks have the largest variation:−3540% higher performance with average context length between 3 and 3.5, compared to using context-insensitive proiles. scrabble The benchmark shows an improvement ACM Trans. Program. Lang. Syst. 80.3 s 75.6 s 50.7 s 47.1 s 35.6 s 33.1 s 166.5 s 151.7 s 262.0 s 218.3 s 40.3 s 37.9 s 64.5 s 52.4 s 24.0 s 23.3 s 31.1 s 26.8 s 28.5 s 27.0 s 33.8 s 31.3 s 24.0 s 23.0 s 25.1 s 23.7 s 22.2 s 21.1 s 24.2 s 20.7 s 46.3 s 42.9 s tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 39 pgo-ee pgo-aot-inline-ee normalized time 1.250 1.200 1.150 1.100 1.050 1.000 0.950 Fig. 10. Compilation Time (Lower Is Beter) Fig. 11. Context-Length Impact on the Benchmark Running Time (Lower is Beter) of approximately 18% tmt , 12%, scalap goes up to 8%, while on the remaining benchmarks in Figure 11, the improvement is−45% when the more precise proiles are present. 5.6 Impact of the Inliner Heuristics on Performance In the following experiments, we assessed the impact of the speciic algorithm features on the benchmark performance. In each experiment, we present results on a subset of benchmarks that show the greatest impact of the speciic component of the algorithm. Transitive compilation of the hot callees with the increased inlining budget. After a method is compiled, its remaining non-inlined callees become the next compilation units. We refer to their transitiv compilation . e as ACM Trans. Program. Lang. Syst. 40 • Vukasovic and Prokopec These callees are compiled as either hot, with the increased compilation budget, or as cold, with the default budget ś the speciics of deciding are explained in Section 3.6. In this experiment, we compared the proposed algorithm against a variant in which IsHothe t policy from Equation 39 is replaced withIsHo simply t = ⊥. In Table 9, column titled "Hot Callees" shows results of our unmodiied algorithm, while the second column titled "No Hot Callees" shows performance when all callees are treated as cold. The improvement IsHotofheuristic the from Equation 39 is in the range of 22% to 28% in case Stream of the -based benchmarks, while for the other benchmarks, the improvement is up to 5%. Trail expansion.The proposed algorithm iteratively expands the initial set of trails across the possible calling contexts. The Benchmark Hot Callees No Hot Callees details of this process are explained in Section 3.4, Call- and the scaladoc 938 ms 968 ms ingContexts policy is deined by Equation 32. In this exper- scalap 157 ms 160 ms iment, we disable the expansion by changing that policy to mnemonics 4208 ms 5853 ms CallingContexts = ∅. Note that by excluding expansion from par-mnemonics 4003 ms 5441 ms the algorithm, the set of hot compilation units contains only the reactors 30582 ms 31442 ms methods that are the roots of the calling contexts of the initially scrabble 49 ms 63 ms chosen proile entries. Figure 12 compares the benchmark run- rx-scrabble 315 ms 323 ms ning time when the trail expansion is disabled (red curve), and Table 9. Transitively Compiling Hot Callees as Hot the default setup with the trail expansion enabled (blue curve). Compilation Units Figure presents the initial hot-context threshold tuning process. Regardless of the threshold value, running time for benchmarks Apparat, Kiama, Scalariform, Scalac, Scaladoc, and Scrabble is strictly better when the expansion is active. Comparing the peak performance on both curves shows that the benchmarks proit up to 20% from this feature. Size of the initial hot contexts set. The constant � from Equation 30 represents the proportion of total time that needs to be spent in a given proile entry in order to consider that entry hot for the initial set of proiles. In this section, we show that there is a range of optimal values � when oftrail expansion is turned on; when the trail expansion is disabled, however, the optimal�values are in of a much narrower range, which varies across benchmarks. Figure 12 contains a subset of the benchmarks that were particularly afected by the � ,value and shows how the diferent values �ofafect performance. The x-axis contains the range of values � , while of the y-axis represents the running time. The greater threshold � implies less initial hot compilation units, i.e. less compilations with the increased inlining budget. Incr� easing above a certain value leads to having no hot compilation units, which is the equivalent ofpgo-e the e coniguration. Based on the experiments with most benchmarks, we found that when the trail expansion is turned, the of optimal values� of lie on the range of .05% 0 up to 0.5% ś in this range, � varies the performance of the no-expansion variant by up to 10%. On most benchmarks, decreasing the amount of hot compilations below a certain threshold negatively afects the performance as there are too many trails, and the best performance for the no-expansion variant is achiev�edbfor etween 0.12% and 0.15%. (though, some of the benchmarks, askiama, proit from the greater initial set of hot contexts). However, the range of optimal values of � for the variant that does use trail expansion is between .008% and 0.25% on most of the benchmarks, which indicates that trail expansion makes the algorithm less sensitive to� .the choice of 5.7 Performance Diferences Between GraalVM on HotSpot and Native Image As shown in Figure 6, when the Graal compiler is used on the JVM (HotSpot or OpenJDK, which use just-in-time compilation), the performance is noticeably higher compared to GraalVM Native Image (which uses Graal in an ahead-of-time compilation mode). Despite the improvements of our inliner on GraalVM Native Image, there is still potential for achieving performance that is closer to that of GraalVM on the JVM. Aside from ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 41 Fig. 12. Tuning the Initial Hot-Context Threshold (With Expansion × vs Without Expansion◦; Lower is Beter) opportunities for better inlining decisions, we point out that there are other reasons for the observed performance diference between HotSpot and Native Image. In this section, we present the features and optimizations that are implemented diferently in these two VMs (or not supported at all on Native Image). This is not a comprehensive overview of the diferences in Graal’s compilation on the JVM and on Native Image, but it shows some of the diferences ś in several cases, we analyze their performance implications by disabling speciic features and optimizations on the JVM. Snippets. Snippets are a mechanism in the GraalVM compiler used to express (in a re- Benchmark Default No arraycopy No arraycopy & copyOf stricted subset of Java) low-level implementa- kiama 210 ms 278 ms 295 ms tions of high-level operations 111]. For [ exam- mnemonics 2723 ms 2863 ms 5470 ms pleinstanceof , (runtime type-check) against par-mnemonics 2295 ms 3604 ms 4398 ms a class without subclasses can be expressed as scalap 107 ms 111 ms 113 ms a read of the object’s header, and a comparison scrabble 43 ms 44 ms 47 ms against a constant. Similarly, a call System. to tmt 7025 ms 7905 ms 8049 ms arraycopy (which copies elements between two Table 10. Impact of Array Copy Snippets in the Graal Compiler on arrays) can be expressed as a loop directly in the the JVM compilation unit thatarraycopy calls , and can be optimized when the arrays are not aliased, and their types known. Most snippets are architecturally indepen- dent due to being expressed in a high-level programming language. However, they can contain platform-speciic building blocks, in the form of special łintrinsic method callsž that map to e.g. machine instructions, so snippet implementations vary across compiler conigurations, underlying hardware platforms, and the VMs. Consider the methodArrays.copyOf from the JDK, which duplicates a given array, and its intrinsiications on HotSpot (JVM) and on Native Image. Figure 13 contains call frames from the lame graphs mnemonics of the benchmark, both when Graal is used on HotSpot, and within Native Image. Each frame in a call stack is a compilation unit, such that the callee units are placed on top of their caller units. The call stack in Figure 13 contains the compilation unit for ArraySpliterator.forEachRemaining the method from the JavaStream ACM Trans. Program. Lang. Syst. 42 • Vukasovic and Prokopec Fig. 13. Diference in thecopyOf Snippet Implementation on Native Image and JVM (Flame Graph Fragment) library. In the case of the Native Image lame graph, there is a separate framecopyOf for the, which is a specialized Native Image subroutine that does the array allocation and copying ś the snippet merely calls the proper built-in method. On the JVM, there is no separate call ś the snippet embeds the duplication logic directly into the IR of forEachRemaining. While for larger arrays, there is usually no observable performance diference between the two versions, for a lotcopyOf of calls on smaller arrays, this results in a noticeable overhead. In Table 10, we show the performance diferences on six bench- marks on which we observed the highest impact of disabling Graal’s Benchmark Parallel GC Serial GC snippets for System.arraycopy and Arrays.copyOf on the JVM. scrabble 43 ms 68 ms We realize that disabling these two snippets does not precisely cor- scalac 1009 ms 1141 ms respond to the Native Image version, because the native C++ JVM reactors 17985 ms 22718 ms implementationarraycopy of is diferent than the implementation kiama 210 ms 243 ms of thearraycopy foreign call on Native Image. However, this ex- Table 11. Comparisons of Garbage Collectors periment shows the magnitude of the impact arraycopy that and with the Graal Compiler on the JVM copyOf snippets have on these benchmarks. Garbage Collection.The Java programming language uses garbage collection (GC) as the automatic memory-management technique. The JVM provides multiple GC implementations in each JDK version. We ran the benchmarks on GraalVM Enterprise Edition running on JDK 8, which by default uses the Parallel Garbage Colle19ctor ]. Parallel [ GC freezes the application threads while performing the collection. However, unlike the Serial GC which was the default in early JDK versions, Parallel GC uses multiple threads to perform garbage collection, which improves its throughput. The default garbage collector in Native Image VM is a serial garbage collector ś it pauses the application threads, but uses a single colle 21].ctor thread [ Although the serial GC implementations on JDK 8 and on Native Image are diferent, it is useful to compare the performance of benchmarks running on JDK 8 with the Parallel GC and the Serial GC, as this gives a rough estimate of how much a diferent GC implementation would afect Native Image. Table 11 shows 4 benchmarks on which the Parallel GC considerably improves performance. The greatest impact on the benchmark’s running time was observed for the scrabble benchmark ś around 35%. Parallel GC speeds up most of the remaining 12 benchmarks by up to 5%. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 43 Speculative Optimizations. JIT compilation on the JVM uses speculative optimizations that speculate about the characteristics of the values in the program in order to optimize the code better and improve performance. Each speculative code optimization is preceded by a computationally inexpensive check that conirms that the speculation is valid. If the check fails, executing the optimized code would be incorrect, so a deoptimization is triggered ś the execution is transferred to the interpreter, and the code is compiled again later, but with less speculations 65[, 71]. AOT compilation on Native Image does not support deoptimization, and therefore does no speculation. In this section, we show that speculations improve JVM performance on a subset of benchmarks. We identiied three speculative optimizations in the Graal codebase for which we observed the highest impact: specu- Benchmark Speculations ON Speculations OFF lative guard motion 65][(which generalizes guard conditions apparat 5526 ms 5942 ms to make them more loop-invariant 22]),[ optimistic aliasing h2 6526 ms 6647 ms analysis (which speculates that two pointers do not repre- mnemonics 2723 ms 2849 ms sent the same object), and speculative type-checking (which scalac 1009 ms 1053 ms speculates that simpler type-check implementations can be scalap 107 ms 116 ms tried irst). These optimizations are also used on Native Image, tmt 7025 ms 7963 ms but without the łspeculationž part ś they will never create a Table 12. Impact of Speculative Optimizations in the deoptimization point. To bring JVM closer to Native Image, Graal Compiler on the JVM we turned of the speculation in these optimizations (the opti- mizations are still enabled,maySpeculate but the calls return false, whereas in the default JVM setup maySpeculate returns false for a speciic code location only after that location previously caused a deoptimization). Table 12 shows six of our benchmarks on which we observed a clear slowdown when disabling speculations: apparat, h2, mnemonics, scalac, scalap, and tmt. On these, slowdowns from disabling the aforementioned speculations range from 13% to 2%. 5.8 Profiling Impact on the Performance To conclude the evaluation, we present the impact of the proiling on the compile time, and the running time Compile Time Running Time of the benchmarks. As we explained in Section 4.2, in Benchmark Default Proiling Default Proiling GraalVM Native Image, proiling is realized in a sepa- h2 36.6s 46.1s 13.3s 23.6s rate compilation mode ś by building an instrumentation mnemonics 20.2s 25.7s 9.6s 21.7s image. The compilation pipeline in the instrumentation- reactors 26.4s 34.6s 35.2s 141.3s image-build process contains a phase, which inserts the scalac 119.1s 164.2s 1.5s 5.7s counter nodes in the IRs of each compilation unit. The scalariform 38.4s 46.3s 0.5s 1.1s proiles are obtained by running the instrumentation Table 13. Profiling Impact on the Compile and Running Time image. Compiling a program with the input proiles is a separate process, performed by building an optimiza- tion image. In the previous experiments in Section 5, we presented diferent aspects of the performance of the optimization image. While the algorithm presented in this paper does not change how the proiling itself is performed in GraalVM Native Image, we demonstrate how it afects the compile time and the running time of the instrumentation image on a set of benchmarks. Table 13 demonstrates the impact of the proiling on the representative benchmarks from Renaissance, DaCapo, and Scalabench suites. To underline the efect of the instrumentation pass, we compare the time necessary to build and run the instrumentation image against the default image, which does not include any proile-guided optimizations. The performance of the benchmarks with the default coniguration, in terms of running the default image are presented and compared to the other conigurations in Section 5.1. We observe that the instrumentation ACM Trans. Program. Lang. Syst. 44 • Vukasovic and Prokopec afects the compile time up to 30% for most of the benchmarks. However on some benchmarks such scala as c we observed the increase of 37%. The instrumentation may introduce the slowdown in the running times of the benchmarks up to 4�, which we recorded for reactors benchmark. Since the proiling is performed to a separate binary and run as a separate process, performance of the optimized image is not afected by the longer time needed to build and run an instrumentation image. We believe that improving the process of obtaining the proiles is possible, but it is out of scope of this paper. Another beneit of having a separate process to collect the proiles is that, once they are stored to a ile, the same ile can be used for multiple optimization-image builds, i.e. compiling a program in an optimized coniguration does not require compiling it and running in the instrumentation mode in case there is at least one proiling ile for the same program from the previous builds. 6 DISCUSSION The goal of this section is to discuss how the proposed algorithm in this paper can be adapted to other compilers. For this purpose we chose the two most commonly used environments ś LLVM 7][and GCC [2]. To examine how our algorithm could be reused in LLVM and GCC, we focus on the proiling infrastructure, intermediate representation, detection of the frequently executed code, proile-guided optimizations, and the inlining optimization. To be clear, we did not reimplement or evaluate our algorithm in LLVM or GCC ś the objective of this discussion is to demonstrate that our algorithm could be used in other compilers, and to put our work into a broader context. 6.1 GCC IR. GCC uses three major intermediate representations: GENERIC 4], GIMPLE [ [5], and RTL [6]. GENERIC is a tree-like language-independent representation of a program used by a compiler’s front end. The midend of the compiler uses GIMPLE, a tree-like representation derived from GENERIC, in three-address form, as an additional restriction. GIMPLE tree is later on transformed into an SSA form, on which the majority of the optimizations is performed, including inlining. The last representation, RTL, is a low-level representation corresponding to a target architecture. Hot-code detection.Many optimizations in GCC beneit from the information about the hotness of79the ]. code [ In GCC hotness is determined on the basic-block level. A number of optimizations such as function inlining, block reordering, and loop unrolling, use the speciic predicate, which indicates whether a basic block can be considered as hot, cold, or never executed. This predicate is used mostly to avoid aggressive optimizations on rarely executed blocks. When the proiling information is available, a predicate is set for each basic block based on the frequency of its execution from the proiles, i.e the hotness of the block. Predicates for hot, cold and non-executed code are determined based on the thresholds that the block frequency must exceed, and which can be tuned. Proiling infrastructureSimilar . to GraalVM Native Image, the proiles are collected and used in the following manner [24]. The program is irst compiled with a lag which enables the proiling-by-instrumentation-phase. The output of running the resulting binary is a ile containing the instrumentation proiles, which will be used as the input of the second compilation of the program. The instrumentation counters are placed in a program’s CFG, and produce the proiles containing the information about the number of function invocations, number of executions of basic blocks, number of executions of each edge in CFG (and therefore the corresponding basic blocks), from which the probabilities of taking a branch are derived [79]. Inlining optimization. The inliner relies on the bin pack algorithm. It uses numerous metrics such as the maximal size of a compilation unit, maximal size of the inlining candidates, the growth of large functions, and so on, in order to prioritize the inlining alternatives before reaching 79]. When a limit the proiling [ information is available, the inlining-candidate callees are prioritized according to a cost-beneit function that uses the hotness proiles and the growth of the function in which the inlining happens. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 45 6.2 LLVM IR. LLVM IR [11] is a strongly typed low-level, three-address representation in SSA form, which allows unstruc- tured control low and uses phi values when merging control paths. Transforming Graal IR to LLVM IR is a straightforward process and all the basic compiler optimizations that work on the Graal IR can be implemented on the LLVM IR with a similar level of efort. Hot-code detection.The inliner relies on several parameters to determine the threshold for deciding whether the code is hot or cold. Optimizations rely on the hot-code classiication when the higher optimization levels are enabled. Hot/cold-splitting optimization uses the edge proiles to classify basic blocks of the current compilation unit into hot and cold. This is also useful for the optimizations such as function inlining and outlining, for which the LLVM implements outlining of the cold regions from the hot code [86]. Proiling infrastructurePr . oiling is traditionally enabled through the instrumentation technique. Proiles that can be collected and exploited contain the information about the hotness of the invoked functions and edges, and receiver types and the number of their occurrences for the virtual invocations, similarly to the proiling information in GraalVM Native Image. It is possible to collect both the context insensitive and callsite-aware proiles [12]. Inlining optimization. The inliner uses the hotness heuristic to ilter out cold indirect calls, and to focus on inlining the hot ones 8, 9].[Target methods corresponding to the most frequent receiver types from the virtual proiles are placed as direct calls if they exceed the set hotness thr40 esholds ]. The blo [ ck-level hotness information is exposed to the inliner, which uses this information by deining the callsite hotness thresholds globally and relatively to the function entr 10].yCost-b [ eneit analysis takes into account the size of the callee-candidates and the function in which the inlining takes place. Heuristics are used to compute the cycle savings per call site and also to limit the amount of recursive inlining. Substantial amount of inlining budget is directed towards more aggressively and precisely performing the inlining optimization around the hot code. 6.3 Discussion Above, we briely described the relevant aspects of LLVM and GCC. In the following, we discuss how our algorithm could be potentially applied to those compilers. Our hot-code-detection algorithm inds the hot inlining trails by expanding hot calling contexts in the proiles. In our implementation, input for the hot-code detection is a set of proiles that determine the basic-block frequency and the call-target probability on the indirect calls. The proile data in GCC and LLVM environments contains the same kind of information. They support performing the instrumentation after the inlining phase, which as a consequence has that the calling contexts from the proiles are partially context27 sensitiv ]. Our preop[osed hot-code detection algorithm can be applied to GCC’s and LLVM’s proiling data to produce the inlining trails. The trails can then be used to determine which callees are in the hot calling contexts, and adjust the hotness predicate for the corresponding basic blocks accordingly. Both described environments use hot-code-region-detection within multiple optimizations. They enable compiling the hot code and optimizing it with modiied budget. Hotness information can be used in inlining, as well as to drive the budget of other optimizations. Both compilers deine speciic threshold values based on which an execution is considered as frequent or not. The thresholds used in our algorithm can be tuned to align with those. Improving the inlining heuristics using the information of the code hotness is a topic of interest in the LLVM and GCC communities3].[ Generally, the aim is to improve the interprocedural optimizations by exploiting the hotness information, which is where the breadcrumb trails may be of the assistance because they connect multiple subroutines. The inlining heuristics in GraalVM, GCC, and LLVM use the cost-beneit analysis that take into account numerous metrics such as the size and the growth of the compilation unit to calculate the cost. Since ACM Trans. Program. Lang. Syst. 46 • Vukasovic and Prokopec both GCC and LLVM emphasize beneits of using the code hotness to prioritize the inlining of a hot call, our modiication to the existing inliner, which assumes giving a greater inlining budget to such calls can be easily incorporated. The inlining budget itself is determined through a diferent set of inliner parameters, deined by the heuristics of the inliner. Therefore, the inlining parameters would have to be tuned for the peak performance with the rest of the compiler’s optimization infrastructure. 7 RELATED WORK In this section, we present a survey of the related work on the proiling, and the usage of the proiling information to aid compilation, inlining heuristics, and other compiler optimizations. We irst present an overview of the common proiling techniques, and their evolution over time. We then review the prior work that focused on acquiring and applying partially contextual proiling data, and on the approximation of fully context-sensitive proiling data using partial proiling information. Finally, we compare our compilation technique with alternative techniques and optimizations that rely on proiles, with a special emphasis on inlining algorithms. Additionally, this section contains an extension of the Graal intermediate representation explanation from Section 4.1. Proiling strategies.One of the earliest uses of proiling was described by Knuth [83], who deine proile d the as a set of execution counts collected during the runtime of the program. Over time, the notion of proiles was expanded to include any metric that describes the program behavior, and that was collected during the execution of the program. The inception of proiling has raised the questions of how the proiles can be exploited to optimize the execution of computer programs, which information they should contain, and on how to decrease the cost of proile collection [102]. Broadly speaking, proiling can be classiied as either instrumentation-based or sampling-based. So far, nu- merous authors have observed that the exhaustive instrumentation (i.e. instrumentation of all the code of the program) provides more precise data compared to the sampling-based proiling 56, 64]. Some [ versions of the Netbeans IDE [17] and the Eclipse Test and Performance Tool Platform 14] come [ with the instrumentation-based proiling tools. However, the instrumentation is usually not suitable for online collection of the proiles, because it imposes a high overhead on the performance 116].[ According to Arnold et al. 36],[the instrumentation can degrade performance by between 30% and 1000%. The GraalVM Native Image, in which we implemented our algorithm, assumes the oline proile collection, which is why it is acceptable to use the instrumentation to gather more accurate execution counts of the proiled events. Some GCC compiler 56[] and LLVM [94] extensions can consume proiles from external tools, to assist compiler optimizations. Most compiler optimizations beneit from the proiling54 data: ], blo inlining ck ordering, [ path- duplication 88],[register allocation 70], and [ many others [98]. The ahead-of-time Scala Native compiler 110] [ supports instrumentation-based proiling, and uses proiles to guide optimizations such as devirtualization, method duplication, and block placement. Proiler Classiication.Another method of classiication is based on whether a proiler uses an online or an oline proiling scheme 117].[ Oline proiling assumes collecting proiles in the separate program runs after which there is a compilation process using them. AOT compilers usually exploit oline proilers. The GCC compiler has a mode for producing instrumented binaries for proile collection, and can use these proiles when creating the optimized binar 20].yOnline [ proiling is performed during the same program run, and is mostly exploited by JIT compilers. Most VMs use JIT compilation, and do proiling in the 15,irst 23, 50stage , 80, 122 [ ], and in some cases also proile their JIT-compile49 d].coFde lückiger [ et al. 72][proposed two-tier JIT compilation for R language which uses instrumentation in the irst tier to optimize default code, and a sampler on the optimized code to trigger reoptimization in the second tier with more type-speciicgprof code., Unlike which is primarily used to proile programs that are AOT compiled, most of the proilers, Valgrind such[28 as], Java Mission Contr[ol26], JProiler, YourKit , hprof, and perf, are not tightly coupled with either AOT or JIT compiled ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 47 code. In another words they can proile both. Jikes RVM 32,[34] uses an instrumentation-sampling framework to perform proile-guided optimizations such as method splitting 52], method[inlining, loop unrolling, and code motion. Partial proiling information. While the exhaustive instrumentation enables the highest accuracy, it usually beneits only applications that need very precise information, such as intrusion detection 48 or].debugging [ Several authors investigated the question of whether incomplete proiling information can be suiciently precise for common compiler optimizations, and how proiles can be approximate 31, 89, 90d].[It was observed that keeping the full calling contexts starting from the root of the program does not have a substantial impact on the proile-guided optimizations, and furthermore, storing fully calling-context-sensitive proiles increases the footprint of the data structures that stores the proiles. Various authors therefore argued for having length- bounded calling contexts 31, [101]. Ausiello et 37 al. ] colle [ cted the proiles with the calling contexts of length at most �, using a data structure calle �-calling-conte d xt forest(kCCF), which consumes less space. The authors concluded experimentally that shorter calling conte � betw xts eof en 10 and 20 are typically suicient to detect the most important control-low paths. While the Native Image PGO supports eicient generation of partial calling contexts, it also dictates the value �. As sho ofwn in Section 5.5, the average value�of is between 3 and 5 (depending on the workload), even though individual calling contexts can be several times longer. Serrano and Zhuang [106] obtain partial call traces using hardware-level tracing, and use them to reconstruct calling context information. In their technique, partial traces are merged if they contain a signiicant overlap. The result of the merge ispartial a calling-context tr(PCCT), ee which is similar to our trail data structure from Listing 4. Although Serrano and Zhuang solve a problem that is similar to ours (merging smaller PCCTs into larger PCCTs corresponds to our trail grafting), there are 4 important diferences between our proposed technique and the technique due to Serrano and Zhuang: (1) In our input proiles from Native Image PGO there, is no overlap for the same position in the activation . tree One node in the activation tree is always represented by exactly one proile entry. This is because Native Image PGO obtains proiles by instrumenting each compilation unit with unique counters, and each node in the activation tree is covered by exactly one compilation unit. While randomly collected trace samples exhibit overlaps to some degree, in our proiling data, for an entry with the calling ℓ , ... , ℓconte , ... ,xt ℓ , 1 � � there is no entryℓ , ... , ℓ , ... , ℓ that could be an overlap in the activation tree. � � � (2) Due to the diferences in the inputs, the design of the two algorithms is diferent. While the technique due to Serrano and Zheng inds overlaps between the proiles to merge the partial call trees together, the proiles in our technique have no overlaps, so their technique cannot be applied directly to our input proiles. Instead, our technique extends the partial contexts by determining the possible callers. This makes the reconstruction problem considerably harder, in our view. (3) The length of the traces that are available to us are typically shorter than those in Serrano and Zhuang’s technique. As we show in Section 5.5, the average context length is between 3 and 4 call frames, while the length of the contexts in Serrano and Zhuang’s technique depends on the hardware-sampling window size, and therefore can reach much longer paths (their paper mentions path sizes of up to 32). The reason is that the Native Image PGO cuts a partial context at a virtual call (which the inliner cannot inline in the instrumentation image, because this image does not have a proile input). There is a considerable consequence of having longer calling contexts ś Serrano and Zhuang report that for partial call trails of length 16 and above, over 80% of reconstructed calling contexts have single callers, and of length 32 and above, that percentage is even greater and exceeds 90%. On the other hand, they observed that the percentage is signiicantly smaller for shorter call trails. Our technique is tailored to ACM Trans. Program. Lang. Syst. 48 • Vukasovic and Prokopec reconstructing call trees from shorter contexts, and as such has to deal with multiple callers more often (which is challenging). (4) Finally, because we perform the expansions more aggressively, we dedicate a large part of the work to approximating the frequencies of the individual nodes in the reconstructed trail (i.e. partial call tree), to determine which of the possible callers more signiicantly contribute to the hotness of the code, and to aid the inliner with more precise frequency information later. In particular, we introduce the attenuation factors (Equation 33) each time we extend the trail upwards, to address the fact that the hotness of a trail is the sum of the hotnesses across each caller. Proiles in hot-code detection and inlining. Proiling is widely used to assist various compiler optimiza- tions20 [ , 29, 34, 56, 72, 103]. While it is diicult to present a complete account of all the optimizations that beneit from proiling information, path duplication 88], inlining [ 33, 54[], polymorphic inlining 76, 78],[speculative code motion65 [ ], function outlining 123], [register allocation 69], and [ proile-driven code motion 57],[are only some of the notable examples. In this section, we focus primarily on hot-code detection, and on using proiles to guide inlining decisions. Mytkowicz et al.93[] used hot-method detection as a criteria for evaluation Java sampling proilers. This metric is important, since incorrect hot-method identiication results in spending the optimization budget in code that is not frequently executed. The importance of hot-code detection was emphasized by Kistler et al.’s work [82] on continuous re-optimization of the hottest code. To identify the hot code and inline the relevant callsites, Krintz 85] e[xtended JikesRVM29 [ ] with both online and oline proile collection, and used the combined proiles to annotate the hot methods, and the callsites to inline. In that work, the estimation of method hotness is calculated based on the method invocation count, and the inlining of hot callsites is based on context-insensitive decisions. A number of inlining heuristics do cost-beneit analyses to decide whether to replace a callsite with the body of the target subroutine8[, 33, 51, 53, 54, 59, 97, 104, 105, 124]. While some inliners mainly use static information such as the size of the methods96[], bypassing proiles usually leads to poor performance. In most compilers, inliners rely on frequency and receiver-type proiles. Arnold et al.33[] compared the performance of various inlining techniques, and remarked that when the only information at disposal is static, all the callsites of the same method are either inlined or not, regardless of the callsite frequency. The other approaches they evaluated used proiling information to compute the inlining beneit. Their results show that more context-sensitive information allows an inliner to make better decisions, and achieve better peak performance. Scheiler’s global inlining104 algorithm ] prioritizes [ the inlining of the most frequently executed methods, while ensuring that the global code-size constraints are not violated ś the (context insensitive) invocation frequency is obtained from the proiling runs of the program. A compilation technique by Suganuma et115 al. ] relies [ on a hybrid form of proiling to detect the most important parts of the program, and to optimize them more aggressively. They use the simplest heuristics based on the static information to optimize the smallest methods, while the expensive optimizations such as inlining are conducted selectively on hot program sections. Their sampling technique determines the hot methods that should be compiled, and these methods are subsequently instrumented to obtain more precise proile information about the hot code. The proiles that they gather are context-insensitive, which impacts their precision. Inlining is hindered by indirect calls (i.e. virtual dispatches), which are common in object-oriented and functional languages ś since the call target is not known, inlining cannot be done accurately. This problem is ameliorated by proiling the receiver types at individual indirect callsites. As describe76 d by ] and GroHölzle ve et al.et[ al.78 [ ], polymorphic inlining can signiicantly improve program performance. However, polymorphic inlining is only as good as is the quality of the proiles, and on larger workloads, context-insensitive proiles have a tendency to get more and more polluted. The experiments done by Grove et76 al. ] indicate [ that context-sensitive ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 49 receiver-type proiles signiicantly improve the performance on the larger workloads. In our solution, trail expansion is performed directly from the proiles, and as such works correctly. On the other hand, trail-grafting operation can attach more callees to a trail that would normally be callable for that callsite, but we rely on the inliner to prune those extra callees by considering only callees that were seen according to the receiver-type proile. Instead of designing the algorithm with ixed inlining parameter values for all workloads, 60] Cooper et al. [ proposed having program-speciic inlining decisions and heuristics. They described a system that adaptively tunes the inlining parameters for a speciic program by eiciently searching the parameter space, and have demonstrated that having program-speciic heuristics and parameters results in best overall inliner performance. Mùller and Veileborg 92][present a static analysis algorithm for optimizing JDK 8 Streams library, whose goal is to transform functional Stream expressions to manually-written loop equivalents. Their system works by identifyingStream the operation, and then performing ahead-of-time inlining of its functions. It exploits the observation that usually, the entire construction and execution Stream of apipeline is located in a single compilation unit, then inlines all of the methods into that compilation unit, and performs escape analyses and read-write eliminations to simplify Stream the operation into a simple loop. Mùller and Veileborg demonstrated on simple Stream programs that their algorithm produces the correct result. In our work, we strived to provide library-agnostic inlining improvements, and we based the inlining decisions on partially context-sensitive proiles ś we did not employ any library-speciic knowledge or static analyses. We believe that inlining and compilation scheduling can be further improved by integrating Mùller and Veileborg’s analysis into trail-expansion heuristics, but we leave that to future work. 8 CONCLUSION We presented a new algorithm that modiies the compilation schedule and the inlining decisions of an ahead-of- time optimizing compiler, with the aim of improving program performance without signiicantly increasing the size of the generated machine code. The algorithm utilizes the partially context-sensitive proiles, collected during oline proiling runs, to reconstruct call-tree fragments,trails calle , which d lead to hot parts of the program, and it uses these trails to inluence the inlining behavior. We formally presented the algorithm, and then described the implementation in GraalVM Native Image, state-of-the-art ahead-of-time compiler for the Java programming language. Evaluation on standard benchmark suites shows performance improvements in the range .5−of 40%, 2 with only 2 out of 16 benchmarks from the evaluation showing a small slowdown of less than 3%. The size of the generated code is increased by.80− 9%, and in 10 out of 16 benchmarks the increase is less than .5%. W 2 e conducted several additional experiments that show the breakdown of performance impacts, and the impact of the various parameters on performance. The algorithm can be implemented in most other optimizing compilers, and is generally useful for other programming languages and runtime environments. Our formalization separates the algorithm from the policies that it can be tuned with, which simpliies the exploration of better policies and heuristics. For example, we believe that augmenting the policies in the algorithm with interprocedural analyses can result in additional performance improvements, but we leave these investigations to future work. REFERENCES [1] 2015. Java Virtual Machine Speciication (Java SE 8 Edition): Chapter 4, the Class File Format. https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html. [2] 2018. GCC. https://gcc.gnu.org/. [3] 2018. GCC 8 Changes. https://gcc.gnu.org/gcc-8/changes.html. [4] 2018. GCC GENERIC. https://gcc.gnu.org/onlinedocs/gccint/GENERIC.html. ACM Trans. Program. Lang. Syst. 50 • Vukasovic and Prokopec [5] 2018. GCC GIMPLE. https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html. [6] 2018. GCC RTL. https://gcc.gnu.org/onlinedocs/gccint/RTL.html. [7] 2018. LLVM. https://llvm.org/. [8] 2018. LLVM Cost-Beneit Estimation Implementation at GitHub. https://github.com/llvm-mirror/llvm/blob/ 88ab6705571782fa664ecfa71b2f959a0daf2d78/lib/Analysis/InlineCost.cpp [9] 2018. LLVM Inliner Implementation at GitHub. https://github.com/llvm-mirror/llvm/blob/6f1d64eb934e12ca5e8dcd378f88d1e6b80e8c55/ lib/Transforms/IPO/Inliner.cpp [10] 2018. LLVM Inlining Parameters. https://llvm.org/doxygen/structllvm_1_1InlineParams.html. [11] 2018. LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html. [12] 2020. LLVM PGO Instrumentation: Example of CallSite-Aware Proiling. https://llvm.org/devmtg/2020-09/slides/PGO_Instrumentation. pdf. [13] 2021. Control-low-graph analysis in the Graal codebase. https://github.com/oracle/graal/blob/ 5708f348ad6a49511f0e3caf5314d72ca8c017e7/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/cfg/ ControlFlowGraph.java [14] 2021. Eclipse Test and Performance Tool Platform. http://archive.eclipse.org/archived_projects/tptp.tgz [15] 2021. HotSpot Runtime Overview. https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html. [16] 2021. LLVM proile-guided optimizations. https://clang.llvm.org/docs/UsersManual.html#proile-guided-optimization [17] 2021. Netbeans: Open source Java proiler. v6.7. https://web.archive.org/web/20210108060217/http://proiler.netbeans.org/. [18] 2021. OpenJDK 8 Optional Class. https://hg.openjdk.java.net/jdk8/jdk8/jdk/ile/687fd7c7986d/src/share/classes/java/ util/Op- tional.java#l120. [19] 2021. Parallel Garbage Collector. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html. [20] 2021. Proile-guided optimization (PGO) using GCC. https://developer.ibm.com/articles/gcc-proile-guided-optimization-to-accelerate- aix-applications/. [21] 2021. Serial Native Image Garbage Collector. https://www.graalvm.org/reference-manual/native-image/MemoryManagement/#serial- garbage-collector. [22] 2021. Speculative guard motion in GraalVM. https://github.com/oracle/graal/commit/6dcc8e4a57d23e7aaf85eeb8dae7ef501b59c18b#dif- 1e4c4d8dd65775bb5c116be6e862315ddebf9b0d84aec949a79af159ef899df4 [23] 2021. V8 Engine. https://v8.dev/. [24] 2022. PGO in GCC 11. https://documentation.suse.com/sbp/server-linux/single-html/SBP-GCC-11/index.html#sec-gcc11-pgo [25] 2022. Simplex Algorithm. https://en.wikipedia.org/wiki/Simplex. [26] 2023. Java Mission Control. https://www.oracle.com/java/technologies/jdk-mission-control.html. [27] 2023. LLVM PGO Context Sensitivity. https://reviews.llvm.org/D54175. [28] 2023. Valgrind. https://valgrind.org/. [29] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapeño Virtual Machine IBM Syst. . J. 39, 1 (jan 2000), 211ś238. https://doi.org/10.1147/sj.391.0211 [30] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting Hardware Performance Counters with Flow and Context Sensitive Proiling. SIGPLAN Not. 32, 5 (May 1997), 85ś96. https://doi.org/10.1145/258916.258924 [31] Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. 2004. Finding and removing performance bottlenecks in large systems. In European Conference on Object-Oriented Programming . Springer, 172ś196. [32] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2000. Adaptive Optimization in the Jalapeño JVM. SIGPLAN Not. 35, 10 (oct 2000), 47ś65. https://doi.org/10.1145/354222.353175 [33] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A Comparative Study of Static and Proile-based Heuristics for Inlining. ProInceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization (DYNAMO . ’00) ACM, New York, NY, USA, 52ś64. https://doi.org/10.1145/351397.351416 [34] Matthew Arnold, Michael Hind, and Barbara G. Ryder. 2002. Online Feedback-Directed Optimization Proof ceedings Java. Inof the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Seattle, Washington, USA (OOPSLA ) ’02). Association for Computing Machinery, New York, NY, USA, 111ś129. https://doi.org/10.1145/582419.582432 [35] Matthew Arnold and Barbara G. Ryder. 2001. A Framework for Reducing the Cost of Instrumented CodePr . In oceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation (Snowbird, Utah, USA(PLDI ) ’01). Association for Computing Machinery, New York, NY, USA, 168ś179. https://doi.org/10.1145/378795.378832 [36] Matthew Arnold and Barbara G. Ryder. 2001. A Framework for Reducing the Cost of Instrumented CoSIGPLAN de. Not. 36, 5 (may 2001), 168ś179. https://doi.org/10.1145/381694.378832 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 51 [37] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella Firmani. 2012. K-Calling SIGPLAN Context Not. Proiling. 47, 10 (oct 2012), 867ś878. https://doi.org/10.1145/2398857.2384679 [38] John Aycock. 2003. A Brief History of Just-in-Time ACM .Comput. Surv. 35, 2 (jun 2003), 97ś113. https://doi.org/10.1145/857076.857077 [39] Andrew Ayers, Richard Schooler, and Robert Gottlieb. 1997. Aggressive Inlining. Proceedings In of the ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation (Las Vegas, Nevada, USA) (PLDI ’97). ACM, New York, NY, USA, 134ś145. https://doi.org/10.1145/258915.258928 [40] Ivan Baev. 2015. Proile-based Indirect Call Promotion. https://llvm.org/devmtg/2015-10/#talk3. [41] J. Eugene Ball. 1979. Predicting the Efects of Optimization on a ProcedurePrBo ocedy edings . In of the 1979 SIGPLAN Symposium on Compiler Construction (Denver, Colorado, USA(SIGPLAN ) ’79). ACM, New York, NY, USA, 214ś220. https://doi.org/10.1145/800229. [42] Thomas Ball and James R. Larus. 1994. Optimally Proiling and TracingAPr CM ograms. Trans. Program. Lang. Syst. 16, 4 (jul 1994), 1319ś1360. https://doi.org/10.1145/183432.183527 [43] Rajkishore Barik and Vivek Sarkar. 2009. Interprocedural Load Elimination for Dynamic Optimization of Parallel Programs. In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation Techniques (P.AIEEE CT ’09) Computer Society, USA, 41ś52. https://doi.org/10.1109/PACT.2009.32 [44] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold.Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (oct 2017), 27 pages. https://doi.org/10.1145/3133876 [45] Yosi Ben Asher, Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, Roy Levin, and Yousef Shajrawi. Aggr2008. essive Function Inlining: Preventing Loop Blockings in the Instruction . Springer Cache Berlin Heidelberg, Berlin, Heidelberg, 384ś397. https: //doi.org/10.1007/978-3-540-77560-7_26 [46] Stephen M. Blackburn, Robin Garner, Chris Hofmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. SIGPLAN Not. 41, 10 (Oct. 2006), 169ś190. [47] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic Calling ProConte ceedings xt. Inof the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada)(OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 97ś112. https://doi.org/10.1145/1297027.1297035 [48] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic Calling SIGPLAN ConteNot. xt. 42, 10 (oct 2007), 97ś112. https: //doi.org/10.1145/1297105.1297035 [49] Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and Koen De Bosschere. 2007. Using Hpm-Sampling to Drive Dynamic Compilation. ProceInedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada)(OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 553ś568. https://doi.org/10.1145/1297027.1297068 [50] Kevin Casey, David Gregg, M. Anton Ertl, and Andrew Nisbet. 2003. Towards Superinstructions for Java InterprSoftwar eters. Ine and Compilers for Embedded Systems , Andreas Krall (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 329ś343. [51] Dhruva R. Chakrabarti and Shin-Ming Liu. 2006. Inline Analysis: Beyond Selection Heuristics. Proceedings of In the International Symposium on Code Generation and Optimization (CGO . IEEE ’06)Computer Society, Washington, DC, USA, 221ś232. https://doi.org/ 10.1109/CGO.2006.17 [52] Craig Chambers and David Ungar. 1991. Making Pure Object-Oriented Languages Practical. Confer Inence Proceedings on Object-Oriented Programming Systems, Languages, and Applications (Phoenix, Arizona, USA (OOPSLA ) ’91). Association for Computing Machinery, New York, NY, USA, 1ś15. https://doi.org/10.1145/117954.117955 [53] P. P. Chang and W.-W. Hwu. 1989. Inline Function Expansion for Compiling C Pr SIGPLAN ograms. Not. 24, 7 (June 1989), 246ś257. https://doi.org/10.1145/74818.74840 [54] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W. Hwu. 1992. Proile-guided Automatic Inline Expansion for C Programs. Softw. Pract. Exper.22, 5 (May 1992), 349ś369. https://doi.org/10.1002/spe.4380220502 [55] Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. 1991. Using Proile Information to Assist Classic Code Optimizations. Softw. Pract. Exper. 21, 12 (dec 1991), 1301ś1321. https://doi.org/10.1002/spe.4380211204 [56] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. 2010. Taming Hardware Event Samples for FDO Compilation. ProceIn edings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization (Toronto, Ontario, Canada)(CGO ’10). Association for Computing Machinery, New York, NY, USA, 42ś52. https://doi.org/10.1145/1772954.1772963 [57] Clif Click. 1995. Global Code Motion/Global Value Numb Proceering. edingsInof the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (La Jolla, California,(PLDI USA)’95). ACM, New York, NY, USA, 246ś257. https://doi.org/10. 1145/207110.207154 ACM Trans. Program. Lang. Syst. 52 • Vukasovic and Prokopec [58] Clif Click and Michael Paleczny. 1995. A Simple Graph-based Intermediate Representation. Papers fromIn the 1995 ACM SIGPLAN Workshop on Intermediate Representations (San Francisco, California, (IR USA ’95) ) . ACM, New York, NY, USA, 35ś49. https://doi.org/ 10.1145/202529.202534 [59] Keith D. Cooper, Mary W. Hall, and Linda Torczon. 1992. Unexpected Side Efects of Inline Substitution: AA Case CM Lett. Study. Program. Lang. Syst. 1, 1 (March 1992), 22ś32. https://doi.org/10.1145/130616.130619 [60] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. 2008. An Adaptive Strategy for Inline Substitution. Proceedings In of the Joint European Conferences on Theory and Practice of Software 17th International Conference on Compiler Construction (Budapest, Hungary) (CC’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 69ś84. http://dl.acm.org/citation.cfm?id=1788374.1788381 [61] George B Dantzig, Alex Orden, Philip Wolfe . 1955. , et al The generalized simplex method for minimizing a linear form under linear inequality restraints. Paciic J. Math. 5, 2 (1955), 183ś195. [62] Jefrey Dean and Craig Chambers. 1994. Towards Better Inlining Decisions Using Inlining ProceTerials. dings of In the 1994 ACM Conference on LISP and Functional Programming (Orlando, Florida, USA (LFP ) ’94). ACM, New York, NY, USA, 273ś282. https: //doi.org/10.1145/182409.182489 [63] David Detlefs and Ole Agesen. 1999. Inlining of Virtual Metho . Springer ds Berlin Heidelberg, Berlin, Heidelberg, 258ś277. https: //doi.org/10.1007/3-540-48743-3_12 [64] M. Dmitriev. 2004. Selective proiling of Java applications using dynamic bytecode instrumentation. IEEE International In Symposium on - ISPASS Performance Analysis of Systems and Software, 2004 . 141ś150. https://doi.org/10.1109/ISPASS.2004.1291366 [65] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Speculation without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler Pr.oIn ceedings of the 2014 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and To(ols Cracow, Poland)(PPPJ ’14). Association for Computing Machinery, New York, NY, USA, 187ś193. https://doi.org/10.1145/2647508.2647521 [66] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler Proceedings . Inof the 7th ACM Workshop on Virtual Machines and Intermediate Languages(Indianapolis, Indiana, USA (VMIL ) ’13). Association for Computing Machinery, New York, NY, USA, 1ś10. https://doi.org/10.1145/2542142.2542143 [67] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler Proceedings . Inof the 7th ACM Workshop on Virtual Machines and Intermediate Languages(Indianapolis, Indiana, USA (VMIL ) ’13). ACM, New York, NY, USA, 1ś10. https://doi.org/10.1145/2542142. [68] Evelyn Duesterwald and Vasanth Bala. 2000. Software Proiling for Hot Path Prediction: Less Pr isoce Mor edings e. In of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (Cambridge, Massachusetts, USA) (ASPLOS IX). Association for Computing Machinery, New York, NY, USA, 202ś211. https://doi.org/10.1145/378993.379241 [69] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter Mössenböck. 2016. Trace-Based Register Allocation in a JIT Compiler. Pr Inoceedings of the 13th International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools (Lugano, Switzerland) (PPPJ ’16). Association for Computing Machinery, New York, NY, USA, Article 14, 11 pages. https://doi.org/10.1145/2972206.2972211 [70] Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck. 2017. Trace Register Allocation Policies: Compile-time vs. Performance Trade-ofs. InProceedings of the 14th International Conference on Managed Languages and Runtimes (Prague, Czech Republic) (ManLang 2017). ACM, New York, NY, USA, 92ś104. https://doi.org/10.1145/3132190.3132209 [71] Stephen J. Fink and Feng Qian. 2003. Design, Implementation and Evaluation of Adaptive Recompilation with on-Stack Replacement. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization (San Francisco, California, (CGO USA) ’03). IEEE Computer Society, USA, 241ś252. [72] Olivier Flückiger, Andreas Wälchli, Sebastián Krynski, and Jan Vitek. 2020. Sampling Optimized Code for ProTce yp edings e Feedback. In of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (Virtual, USA (DLS ) 2020). Association for Computing Machinery, New York, NY, USA, 99ś111. https://doi.org/10.1145/3426422.3426984 [73] Edward Fredkin. 1960. Trie MemorCommun. y. ACM 3, 9 (sep 1960), 490ś499. https://doi.org/10.1145/367390.367400 [74] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. Proceedings In of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada) (OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 57ś76. https://doi.org/10.1145/1297027.1297033 [75] James Gosling. 1995. Java Intermediate Bytecodes: ACM SIGPLAN Workshop on Intermediate Representations (IR’95). SIGPLAN Not. 30, 3 (March 1995), 111ś118. https://doi.org/10.1145/202530.202541 [76] David Grove, Jefrey Dean, Charles Garrett, and Craig Chambers. 1995. Proile-Guided Receiver Class Prediction. Proceedings In of the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (Austin, Texas, USA(OOPSLA ) ’95). Association for Computing Machinery, New York, NY, USA, 108ś123. https://doi.org/10.1145/217838.217848 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 53 [77] Martin Hirzel and Trishul Chilimbi. 2001. Bursty tracing: A framework for low-overhead temporal 4th Apr CM oiling. WorkshopInon Feedback-Directed and Dynamic Optimization (FDDO-4) . Citeseer, 117ś126. [78] Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-dispatched Calls with Run-time Pr Typ oceeeFe dings edback. of In the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation (Orlando, Florida, USA (PLDI ) ’94). ACM, New York, NY, USA, 326ś336. https://doi.org/10.1145/178243.178478 [79] Jan Hubicka. 2005. Proile driven optimisations inGCC GCC. Summit In Proceedings . Citeseer, 107ś124. [80] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. ProceeIn dings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Atlanta, Georgia, USA (OOPSLA ) ’97). Association for Computing Machinery, New York, NY, USA, 318ś326. https: //doi.org/10.1145/263698.263754 [81] Suresh Jagannathan and Andrew Wright. 1996. Flow-directed Inlining. ProceeIn dings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia, Pennsylvania, (PLDI USA’96) ) . ACM, New York, NY, USA, 193ś205. https://doi.org/10.1145/231379.231417 [82] Thomas Kistler and Michael Franz. 2003. Continuous Program Optimization: A Case ACMStudy Trans. . Program. Lang. Syst. 25, 4 (jul 2003), 500ś548. https://doi.org/10.1145/778559.778562 [83] Donald E. Knuth. 1971. An Empirical Study of FORTRAN Programs. Softw. Pract. Exp.1, 2 (1971), 105ś133. https://doi.org/10.1002/spe. [84] Thomas Kotzmann and Hanspeter Mossenbock. 2007. Run-Time Support for Optimizations Based on Escape Analysis. Proceedings In of the International Symposium on Code Generation and Optimization (CGO . IEEE ’07) Computer Society, Washington, DC, USA, 49ś60. https://doi.org/10.1109/CGO.2007.34 [85] C. Krintz. 2003. Coupling on-line and of-line proile information to improve program pInternational erformance. In Symposium on Code Generation and Optimization, 2003. CGO 2003. 69ś78. https://doi.org/10.1109/CGO.2003.1191534 [86] Aditya Kumar. 2019. Hot Cold Splitting Optimization Pass In LLVM. https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech8. [87] Anatole Le, Ondřej Lhoták, and Laurie Hendren. 2005. Using Inter-Procedural Side-Efect Information in JIT Optimizations. Compiler In Construction , Rastislav Bodik (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 287ś304. [88] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-based Duplication Simulation (DBDS): Code Duplication to Enable Compiler Optimizations. Proceedings of the In2018 International Symposium on Code Generation and Optimization (Vienna, Austria) (CGO 2018). ACM, New York, NY, USA, 126ś137. https://doi.org/10.1145/3168811 [89] Roy Levin, Ilan Newman, and Gadi Haber. 2008. Complementing Missing and Inaccurate Proiling Using a Minimum Cost Circulation Algorithm. Pr Inoceedings of the 3rd International Conference on High Performance Embedded Architectures and Compilers (Göteborg, Sweden) (HiPEAC’08) . Springer-Verlag, Berlin, Heidelberg, 291ś304. [90] P. F. Sweeney M. Arnold. 2000.Approximating the calling context tree via sampling . Technical Report. [91] Scott Milton and Heinrich (Heinz) Schmidt. 1994. Dynamic Dispatch in Object-Oriented Languages. (03 1994). [92] Anders Mùller and Oskar Haarklou Veileborg. 2020. Eliminating Abstraction Overhead of Java Stream Pipelines Using Ahead-of-Time Program Optimization. Proc. ACM Program. Lang. 4, OOPSLA, Article 168 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428236 [93] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. 2010. Evaluating the accuracy of Java prAoilers. CM Sigplan Notices 45, 6 (2010), 187ś197. [94] Diego Novillo. 2014. SamplePGO: The Power of Proile Guided Optimizations without the Usability Proceedings Burden. of the In2014 LLVM Compiler Infrastructure in HPC (New Orleans, Louisiana) (LLVM-HPC ’14). IEEE Press, 22ś28. [95] Michael Paleczny, Christopher Vick, and Clif Click. 2001. The Java HotSpot Server Compiler Proceedings . Inof the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume (Monter 1 ey, California) (JVM’01). USENIX Association, Berkeley, CA, USA, 1ś1. http://dl.acm.org/citation.cfm?id=1267847.1267848 [96] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler J. Funct. Inliner Program. . 12, 5 (July 2002), 393ś434. https://doi.org/10.1017/S0956796802004331 [97] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An Optimization-driven Incremental Inline Substitution Algorithm for Just-in-time Compilers. Proceedings In of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (Washington, DC, USA(CGO ) 2019). IEEE Press, Piscataway, NJ, USA, 164ś179. http://dl.acm.org/citation.cfm?id= 3314872.3314893 [98] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. 2017. Making Collection Operations Optimal with Aggressive JIT Compilation. ProceInedings of the 8th ACM SIGPLAN International Symposium on Scala (Vancouver, BC, Canada) (SCALA 2017). ACM, New York, NY, USA, 29ś40. https://doi.org/10.1145/3136000.3136002 ACM Trans. Program. Lang. Syst. 54 • Vukasovic and Prokopec [99] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: benchmarking suite for parallel applications on the JVM.. In PLDI, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 31ś47. http://dblp.uni-trier.de/db/conf/pldi/pldi2019. html#ProkopecRLD0SBZ19 [100] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpanyapong, and Weng-Fai Wong. 2004. Compiler Orchestrated Prefetching via Speculation and Predication. SIGPLAN Not. 39, 11 (Oct. 2004), 189ś198. https://doi.org/10.1145/1037187.1024416 [101] Steven P Reiss and Manos Renieris. 2001. Encoding program executions. ProceInedings of the 23rd International Conference on Software Engineering. ICSE 2001 . IEEE, 221ś230. [102] Alan D Samples. 1991.Proile-driven compilation . Technical Report. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES. [103] Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and Mira Mezini. 2011. Complete and Platform-Independent Calling Context Proiling for the Java VirtualEle Machine ctronic.Notes in Theoretical Computer Science 279, 1 (2011), 61ś74. https: //doi.org/10.1016/j.entcs.2011.11.006 Proceedings of the Bytecode 2011 workshop, the Sixth Workshop on Bytecode Semantics, Veriication, Analysis and Transformation. [104] Robert W. Scheiler. 1977. An Analysis of Inline Substitution for a Structured ProgrammingCommun. Language A.CM 20, 9 (Sept. 1977), 647ś654. https://doi.org/10.1145/359810.359830 [105] Manuel Serrano. 1997.Inline expansion: When and how? Springer Berlin Heidelberg, Berlin, Heidelberg, 143ś157. https://doi.org/10. 1007/BFb0033842 [106] Mauricio Serrano and Xiaotong Zhuang. 2009. Building Approximate Calling Context from Partial 2009 Call International Traces. In Symposium on Code Generation and Optimization . 221ś230. https://doi.org/10.1109/CGO.2009.12 [107] Andreas Sewe, Jannik Jochem, and Mira Mezini. 2011. Next in Line, Please!: Exploiting the Indirect Beneits of Inlining by Accurately Predicting Further Inlining. ProceInedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 (Portland, Oregon, USA(SPLASH ) ’11 Workshops). ACM, New York, NY, USA, 317ś328. https://doi.org/10.1145/ 2095050.2095102 [108] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine. OOPSLA In . 657ś676. [109] Denys Shabalin. 2020. Just-in-time performance without warm-up. (2020), 165. https://doi.org/10.5075/epl-thesis-9768 [110] Denys Shabalin and Martin Odersky. 2018. Interlow: Interprocedural Flow-Sensitive Type Inference and Method Duplication. In Proceedings of the 9th ACM SIGPLAN International Symposium on Scala (St. Louis, MO, USA(Scala ) 2018). Association for Computing Machinery, New York, NY, USA, 61ś71. https://doi.org/10.1145/3241653.3241660 [111] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and Thomas Würthinger. 2015. Snippets: Taking the High Road to a Low Level. ACM Trans. Archit. Code Optim. 12, 2, Article 20 (June 2015), 25 pages. https://doi.org/10.1145/2764907 [112] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (Orlando, FL, USA(CGO ) ’14). ACM, New York, NY, USA, Article 165, 10 pages. https://doi.org/10.1145/2544137.2544157 [113] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael Franz. 2014. Comparing Points-to Static Analysis with Runtime Recorded Proiling Data. PrIn oceedings of the 2014 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and To(ols Cracow, Poland)(PPPJ ’14). Association for Computing Machinery, New York, NY, USA, 157ś168. https://doi.org/10.1145/2647508.2647524 [114] Edwin Steiner, Andreas Krall, and Christian Thalinger. 2007. Adaptive Inlining and On-stack Replacement in the CACAO Virtual Machine. InProceedings of the 5th International Symposium on Principles and Practice of Programming (Lisb inoa, Java Portugal) (PPPJ ’07). ACM, New York, NY, USA, 221ś226. https://doi.org/10.1145/1294325.1294356 [115] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2002. An Empirical Study of Method Inlining for a Java Just-in-Time Compiler. In Proceedings of the 2nd Java Virtual Machine Research and Technology Symposium . USENIX Association, USA, 91ś104. [116] Omri Traub, Stuart Schechter, and Michael D Smith. 2000. Ephemeral instrumentation for lightweight program Unpublishe proiling. d technical report, Department of Electrical Engineering and Computer Science, Harvard University, Cambridge, Massachusetts (2000). [117] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of Proile Data on Code SIGPLAN Quality Not. . 52, 5 (jun 2017), 1ś10. https://doi.org/10.1145/3140582.3081037 [118] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2 (April 1991), 181ś210. https://doi.org/10.1145/103135.103136 [119] John Whaley. 2000. A Portable Sampling-Based Proiler for Java Virtual Machines. Proceedings In of the ACM 2000 Conference on Java Grande (San Francisco, California, (JA USA VA ) ’00). Association for Computing Machinery, New York, NY, USA, 78ś87. https://doi.org/10.1145/337449.337483 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 55 [120] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019. Initialize Once, Start Fast: Application InitializationPratoc.Build ACM PrTime ogram.. Lang. 3, OOPSLA, Article 184 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360610 [121] Thomas Wuerthinger, Christian Wimmer, and Hanspeter Moessenboeck. 2007. Visualization of Program Dependence Graphs. [122] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017. Practical Partial Evaluation for High-performance Dynamic LanguagePrRuntimes. oceedings of In the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 662ś676. https://doi.org/10.1145/3062341.3062381 [123] Graham Yiu. 2017. Partial Inlining with multi-region outlining based on PGO information. https://reviews.llvm.org/D38190 LLVM Pull Request. [124] Peng Zhao and José Nelson Amaral. 2004. To Inline or Not to Inline? Enhanced Inlining Decisions . Springer Berlin Heidelberg, Berlin, Heidelberg, 405ś419. https://doi.org/10.1007/978-3-540-24644-2_26 ACM Trans. Program. Lang. Syst. 56 • Vukasovic and Prokopec A COMPILATION UNIT EXAMPLE Having demonstrated the algorithm on a simple example, we illustrate its execution on mnemonics the benchmark, from the Renaissance benchmarking suite 99].[Our algo- rithm identiied 12 hot methods for compilation, one of them beingorg.renaissance.jdk.streams.MnemonicsCoder- WithStream.encode. In this section, we show the compila- tion of the encode method, and how the trail is applied to the inlining tree. Figure 14 shows a fragment of the inlining tree of the encode method, created by the Graal compiler’s inlining algorithm, and visualized with the Ideal Graph Visualizer (IGV) tool121 [ ]. Several nodes were zoomed in and high- lighted, to make their captions more readable. The cap- tion of each node consists of the node’s unique ID, fol- lowed by a string Sg and the node-count of the respective method, name of the method, and the exploration prior- ity of the inlining tree node (in square brackets). The root node corresponds to encode, and its direct child nodes corre- spond to a set of calleesencode of . One such callee method isReferencePipeline.collect, which has children of its own, for example, the methoAbstractPipeline. d evaluate from the igure. Further down, one child of the evaluate method is the node for theTerminalOp. evaluateSequential method. These nodes represent the hottest parts of the trail, and lead to the method that contains the main loop of the JDK Stream operation. Fig. 14. Inlining Tree Fragment for the encode Method We next consider the trail that corresponds to the hot From themnemonics Benchmark compilation unit encode. Figure 15 contains the nodes of the trail that directly correspond to the highlighted inlining tree nodes in Figure 14. The highlighted nodes in Figure 15 show some of the relevant metrics such as the attenuation facto�r , breadcrumb hotness �, total subtree hotness� and the size� expressed as the IR node count. The trail contains all the highlighted nodes from the inlining tree, in the same caller-callee order ś exploration priority is boosted for all the inlining-tree nodes that can be mapped to the trail nodes. In Figure 14, the exploration priority of these on-trailž ł no � = des 0.29384, is which is noticeably higher than the surrounding nodes, whose priority is in .026 theto0 0.049 range. This larger value is a consequence of the modiied expansion priority � from Equation 21 ś it forces the inliner to prioritize the exploration along the corresponding call chain, and to explore the tree deeper around this region. Importantly, the exploration of other parts of the inlining tree still takes placep,enalty sincefunction the from Equation 20 reduces the exploration of subtrees that become too large. B CASE STUDY: INLINING SCHEDULE IN THE MNEMONICS BENCHMARK In this section, we analyze the impact of the proposed algorithm mnemonics on the benchmark. The aim is to demonstrate how our algorithm works onreal-life a example from the evaluation benchmark. Figures 16 and 17 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de57 Fig. 15. Part Of a Trail Forencode Method Frommnemonics Benchmark contain the most important parts of the lame graph for the AOT-compile mnemonics d benchmark, with and without the proposed inlining algorithm, respectively. We use this example to illustrate the efect of two speciic features of the proposed inliner: (1) we identify the compilation units that are hot and boost their compilation budget, and (2) we change the compilation order, which leads to a diferent set of compilation units. In both cases, we show how these features afect the benchmark emphasize the relevant frames in the call stacks. To see the efect of increasing the inlining budget in hot compilation units, consider the call stack on the left in Figure 16, in which the metho ArraySpliterator.forEachRemaining d is a hot compilation unit. The new inlining algorithm performs more aggressive inlining in this compilation unit ś all the callees are inlined into forEachRemaining, except for thearraycopy snippet, as explained in Section 5.7. On the other hand, without the proposed algorithm, several callee methoAbstractPipeline.copyInto ds, i.e. (as well as their callees) remain separate compilation units in the lame graph, as shown in Figure 17 in the call stack on the left. ACM Trans. Program. Lang. Syst. 58 • Vukasovic and Prokopec Fig. 16. Part Of a Flame Graph Formnemonics Benchmark With the Proposed Inlining Algorithm Fig. 17. Part Of a Flame Graph Formnemonics Benchmark With the Original Native Image Inliner To see the efect of modifying the compilation order, note that the set of compilation units difers between the lame graphs in Figures 16 and 17. In the version with the proposed inlining and compilation-scheduling algorithm (Figure 16), ReferencePipeline.collect the compilation unit in the right call stack has a single remaining callee ś metho ReduceOp.evaluateSequential d . In the standard version, this evaluateSequential is not a standalone compilation unit, and is insteadReferencePipeline.collect inlined in method, which then runs out of compilation budget before inlining HashMap$EntrySpliterator.forEachRemaining. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de59 C INLINER CHALLENGES FROM A USER PERSPECTIVE In this section, we give several classes of code patterns that pose particular challenge to inlining algorithms. Our emphasis is on object-oriented and functional programming languages. Our goal is to illustrate some of the inlining problems from a programmer’s perspective, and provide possible mitigations that a programmer can apply (when the inlining algorithm is not suiciently sophisticated to apply them automatically). The suggested mitigations are not exhaustive, and the examples are not comprehensive ś they are based on our own experience and performance analyses of individual programs. Frequency proiles are polluted. Since inlining decisions are typically heavily guided by execution frequency proiles, a common problem is that the frequency information of a callsite is imprecise. Consider a frequency proile on a control-low construct such as a loop. If the subroutine that the loop belongs to is called from many diferent callsites, then the frequency of the loop may vary for the diferent callers, but a context-insensitive proile will only report the average frequency. In such cases, we consider the frequency proile polluted. If the proile pollution results in an underestimate of the call frequency, a performance critical call might not get inlined. Example: Listing 6 shows an implementation of the quicksort algorithm in the Scala program- def sort (xs: Array [Int], lo: Int , hi: Int) { ming language. The implementation consists of if (lo >= hi || lo < 0) return val p = part (xs , lo , hi) two functions sort and part. The part function sort (xs , lo , p - 1) partitions the subsequence using the last element sort (xs , p + 1, hi) as the pivot, and places elements smaller than def part (xs: Array [Int], lo: Int , hi: Int) = { the pivot to the left of the subsequence, and the var pIndex = lo - 1 polluted frequency proile larger elements to the right of the subsequence. var j = lo The sort function partitions its subsequence by while (j <= hi - 1) { if (xs(j) <= xs(hi)) { afected inlining decision invoking part, and then recursively invokes sort pIndex += 1 on the partitions. swap (xs , pIndex , j) The while loop in the part function is invoked j += 1 many times recursively, and for progressively shorter and shorter subsequences. Since most of swap (xs , pIndex + 1, hi) the calls part to are near the leaves of the recur- return pIndex + 1 sion tree, the averaged loop frequency is heavily Listing 6. uicksort Algorithm biased towards those shorter loops. An inliner may therefore decide not to inline swap thecall inside the loop body, which considerably changes the performance of the compiled code. Mitigation: The programmer can artiicially introduce context-sensitivity into the code by replicating the code parts depending on the context in which they execute. In the concrete example in Listing 6, the programmer can repeat the while loop inside two branches, separated by a condition such hi -aslo < THRESHOLD. This ensures that the two copies of the loop get attributed with separate frequency proiles, which subsequently biases the inliner to inline swapthe call at least in the hotter loop. Alternatively, the programmer can use metaprogramming facilities to declar part e the function as a C macro, C++ template, or a Scala macro, and then instantiate its body twice, calling a diferent instantiation depending the diference hi and betw loe.en Receiver-type proiles are too polluted.To be able to inline indirect calls, an inliner speculates on what the target subroutine is ś it chooses several likely targets, and emits code that checks what the target address (or receiver type) is, and then inlines that implementation into the branch in which the check passes. By doing so, the inliner bets that this branch will be entered in most cases. The success of this technique depends on the quality of the call target proile ś if the proile is too polluted, the speculations done in the compiled code are rarely correct. ACM Trans. Program. Lang. Syst. 60 • Vukasovic and Prokopec Example: Each collection in the Scala standard library has def foreach [U](f: A => U) { a foreach function that applies a user-speciied function to var i = 0 while (i < table . length ) { each element of the collection. Listing 7 sho foreach ws the val entry = table (i) function of the HashSet collection, which traverses an array if ( entry ne null ) f( elem ( entry )) of entries, and applies the user function f to each non-empty i += 1 array entry. A call to function f is indirect, because the con- polluted receiver-type proile crete implementation is unknown ś an inliner must therefore Listing 7. ScalaHashSet#foreach rely on the receiver-type proile to devirtualize the call to f. Sinceforeach is one of the most commonly used collec- tion operations in Scala, the receiver-type proile is as a rule polluted in all but the simplest programs. Mitigation: The programmer must reduce the amount of proile pollution ś one approach is to use metapro- gramming when designing the library so that common functions (such foreach as the ) are implemented as Scala macros or C++ templates, which reinstantiate the code at each callsite. If the foreach callis to itself indirect, users can manually insert a receiver-type-check for the types they expect to be common at a particular callsite, and cast the receiver down to a concrete type before calling a function foreach such as . In the example in Listing 7, the user can also use an iterator andwhile a loop instead of the foreach, as that either eliminates the indirect call to the function f, or creates a separate callsite for proiling, thereby reducing proile pollution. Nested polymorphic inlining spends too much budget. The aforementioned proile-based def foldLeft [B](z: B)(op: (B, A) => B): B = { devirtualization technique gets rid of indirect calls var result = z this .foreach(x => result = op(result , x)) by inlining several likely targets, and dispatch- result ing between them based on a receiver-type-check. code-bloating nested indirect calls The number of likely targets is small (usually up Listing 8. ScalaTraversableOnce#foldLeft to three), but this still results in a code-bloat as the polymorphic inlining gets deeper. Since each level in the inlining tree speculates on more than a single implementation, each of which can contain nested indirect calls, the number of inlined combinations grows exponentially, even though only some paths in the inlining tree are actually executed at runtime. Most inliners are bounded by the size of the compilation unit, so the code-bloat forces them to stop before attempting to inline other parts of the call tree. Code-bloat also afects other size-driven optimizations. Example: Listing 8 shows the implementationfoldLeft of the operation for the TraversableOnce interface, which covers collections deined solely in terms foreach of their function. The foldLeft folds over the collection elements by starting from a zero element z, and successively applying the operator op to the folded value and the collection element.foldLeft The calls foreach, passing it a function that calls op and updates the folded value result. Since both theforeach and the op call are indirect (the former because the typ this e ofvaries, and the latter because the user-speciie opd parameter varies), several concrete targets are inline foreach d for , and then several concrete targets for op are recursively inlined for each of the speforeach culated targets. Mitigation: If the language supports metaprogramming, the programmer may again resort to macros to force instantiation. In the example in Listing 8, byfoldLeft deiningas a macro or a template makes the receiver of foreach and the op target visible, so the compiler can convert those indirect calls to direct calls. Even if those receivers are not visible, instantiating foldLeft the code at the callsite results in a new proiling point, which reduces pollution. Low frequency callee code can optimize code of a high frequency calleeThe . bias that an inliner typically has towards high-frequency calls can spend the inlining budget before low-frequency calls are inlined. Some of ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de61 the low-frequency calls may introduce additional type information that can enable subsequent optimizations, so not inlining them results in suboptimal performance. Example: The Scalaaggregate function, shown in Listing ??, is a collection operation that generalizes foldLeft, and can have a parallel implementation. By default, it is implemented foldLeft in terms of in the TraversableOnce interface. The signature of aggregate takes the zero-elementz as a by-name argument, meaning that the argument is not immediately evaluated at the callsite ś a function that represents the callsite-side expression is passed instead. In themain function, the aggregate function is used to return the sum of the lengths of all arguments. Here, the zero-element 0 is not immediately computed, but is instead passed as a function that returns 0. Consequently, even if the foldLeft from Listing 8 is inlined into the compilation aggregate,of and simpliies to a simple while loop, the call to the function representing the by-name parameter z might not get inlined. Due to the use of erasure to implement genericity in Scala, if the by-name z isparameter not inlined, it is returned as a boxed value of typ java.lang.Integer e . The boxed value subsequently causes boxing and unboxing in the while loop, which hurts performance at the place where most of the time is spent. Wzere the call inlined, the compiler could more easily apply optimizations such as escape analysis. Mitigation: The library designers should avoid by-name arguments (i.e =>B. functions, the which lazily evaluate the argument when referenced), and use by-value arguments instead. In the example in Listing ??, usingB instead of=>B might have arguably been a better choice. More generally, if a low-frequency call is direct, the user can force the inlining by using @inline an annotation when available. Without low-sensitive analyses in the inliner, there is not much else that a user can do. Low frequency callee has hot code. Another common problem for call-frequency-based inliners is to inline calls that happen infrequently, but which themselves contain a lot of hot code (for example, a high-frequency loop). If the callee receives parameters from the caller that devirtualize callsites in the callee, or enable escape analysis of the parameters allocated at the callsite, then not inlining such a low-frequency callee is typically detrimental to performance. Example: The foldLeft function from Listing 8 manifests this problem foreach ś itsfunction is called only once from its body, but the foreach itself contains a high frequency loop whose body has several indirect calls that involve the parameters passed at its callsite. Mitigation: For direct calls, the programmer may resort to metaprogramming, or to@inline the compiler hint, when available. In the example in Listing 8, it is beneicial for the library designer foldLefttoin override heavily used collections, so that it contains whilea loop instead offoreach a call. Another way to mitigate indirect calls is to speculate on the type this of in the programming language itself ś the frontend compiler for a programming language that supports metaprogramming may speculatively instantiate foreach all implementations that are macros (to aid the inliner of the optimizing compiler of the runtime environment). D ALGORITHM DETAILS This section contains the details of the policies used in the algorithm to detect the most frequently executed code and to approximate longer partially-context-sensitive proiles based on the input proiles. We also explain in details the classiication of the callees as either hot or cold. These algorithm components are introduced in Sections 3.4 and 3.6. ACM Trans. Program. Lang. Syst. 62 • Vukasovic and Prokopec D.1 Hot-Code-Detection Policies Details This section contains the deinitions and the details of the key procedures for the hot-code detection from Algorithm 2, based on which we deine hot-co a de-detection policy . Equation 30 formally describes creating a set of initial trails fr Π.om Wethe deine proile a constant� ∈ [0, 1], and mandate that the proile’s contribution ℎ to the overall hotness excee�ds. InitialTrails(Π) ≡ {(�, �,�) : (⟨ℓ , ... , ℓ ⟩, ℎ ) ∈ Π∧ Í > �} 1 � � (30) (�,ℎ)∈Π where � = {� , ... , � } � = {�  � , ... , �  � } � = {� } ℓ ℓ ,...,ℓ ℓ ℓ ,ℓ ℓ ,...,ℓ ℓ ,...,ℓ ℓ 1 1 � 1 1 2 1 �−1 1 � 1 DetectionDone becomes true when all the trails �frend om up in the inal set �, as per Equation 31. DetectionDone(�, �) ≡ � \ � = ∅ (31) This termination condition therefore assumes (1) � gr that ows monotonically, and (2) that � eventually stops growing. CallingContexts procedure. represents a set of all the calling contexts from the proile entries, which can be used for extending a trail, and is deined in Equation 32. We identify Π|the ofsubset proile entriesΠin that refer to callsite executions speciically. For a sp�e,ciic the settrail callerProilesis determined as those entries fromΠ| that end with a subroutine � , and call root(�) in the call-graph � (below�,  � ∈ � where � = (�, �) � � 1 2 is short for �  � ∈ �). 1 2 callerProiles((�, �,�), Π, �) ≡ {(⟨� , ... , � ⟩, ℎ) : (⟨� , ... , � ⟩, ℎ) ∈ Π| ∧ �  ����(�, �) ∈ � } 1 � 1 � � � (32) CallingContexts(�,Π, �) ≡ {� : (�, ℎ) ∈ callerProiles(�,Π, �)} To estimate the portion of the trail � � hotness for a particular extension �⊙ � the CallingContext procedure computes an attenuation factor � (�) ∈ [0, 1] of each context� = ⟨� , ... , � ⟩. Below, the numerator is the hotness � 1 � of one particular calling conte � = ⟨�xt, ... , � ⟩ that calls root(�), and the denominator is the hotness sum of all 1 � the calling conte�xts that call root(�). � ,...,� 1 � � (�) ≡ Í where (⟨� , ... , � ⟩, ℎ ) ∈ Π (33) � ,...,� 1 � � 1 � (�,ℎ)∈callerProiles(�,Π,� ) � (� ) = 1 �(� ) = � (� )·(�(� )+ �(� )) s s s ,s s s 0 0 0 1 0 0 s s s 0 5 7 s s s 1 6 8 s h h h �(� ) = � (� )·(�(� )+�(� )) 1 2 3 s ,s s ,s s ,s s ,s ,s 0 1 0 1 0 1 0 1 2 �(� ) = h � (� )=1 s ,s 1 s s 0 1 2 s 0 2 s s s 3 4 � (� ) = s ,s ,s s s 3 4 0 1 2 h +h +h 1 2 3 We will use the same example igure from Section 3.4 (presented above) to illustrate the deinitions of the attenutation factor, trail hotness, and breadcrumb hotness. Trail � ← � → � (on the left) has the calling conte � → xts� , � → � and � → � , with hotnessℎ , ℎ and 3 2 4 0 1 5 6 7 8 1 2 ℎ , respectively. The attenuation factors of these diferent calling contexts are computed using the Equation 33. To compute the hotness of the trail, we need to sum together the hotness of the breadcrumbs, but weigh them using the attenuation factors. We deine three functions to serve this purpose: graft-point attenuation �, which records the attenuation factor when the trail gets extended; breadcrumb hotness �, which records the hotness of ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de63 the individual node; and the trail hotness �. To illustrate this, we use the example from the preceding igure. In the igure, the root attenuation �(� ) of the trail � ← � → � is 1, but after the trail is extended, the attenuation � 3 2 4 of that node becomes /ℎ +ℎ +ℎ . Next, the hotness � of an individual breadcrumb � is inherited from the 1 2 3 � ,� 0 1 calling context hotness ℎ . The hotness � of the trail is computed recursively, by summing the hotness of the children and the current node, and multiplying it with the attenuation �. Trail hotness.The trail hotnessis a function � : �(�) → R that maps a trail to a non-negative real value. For its deinition we use the auxiliary functions � and �. Deinition D.1. Graft-point attenuation of a trail � is a function � : � → [0, 1] that maps each node to a real value between 0 and 1. For any trail � = (�, �,�), � (�) = 1 for all the nodes that are not graft-points, � ∉ i.e �.. For graft-points � ∈ �, the algorithm incrementally constructs � when the trail � is created. The rules are as follows: • For all the trails that are initially created from some pr(⟨oile ℓ , ... , ℓentr ⟩, ℎy) ∈ Π (see Equation 30), the 1 � algorithm sets � (� ) = 1. That is, attenuation is 1 on new trails. � ℓ • For every trail � = (�, �,�) that is the result of grafting � � (see Equation 9), where� = (� , � ,� ) � � � � � ,...,� 1 � and � = (� , � ,� ): if � ∈ � , then � (�) = � (�); otherwise if � ∈ � , then � (� ) = � � � � � � � ,� ,...,� � � � ,...,� ,� ,...,� � 2 � 1 � 2 � � (� ). That is, attenuation is inherited from the inputs. � � ,� ,...,� � 2 � • For every trail � = (�, �,�) that is the result of extension � ⊙ �, where � = (� , � ,� ) and � = ⟨ℓ , ... , ℓ ⟩, � � � 1 � the algorithm computes an attenuation factor � (�) for each context� (as deined in Equation 33), when the context � created in theCallingContexts procedure in line 6 of Algorithm 2. Then, for the root graft-point � (����(�, �)) = 1; for the previous root � (� ) = � ; and for all other � ∈ � , � � ℓ ,...,ℓ ,sub(����(� ,� )) � � ,...,� � 1 � � � 1 � � (� ) = � (� ) That is, the� of the graft-point that was previously the root is set to the � ℓ ,...,ℓ ,� ,...,� � � ,...,� � 1 � 1 � 1 � value� , and the attenuation of the remaining graft-points is kept unchanged. Deinition D.2. Breadcrumb hotness of a trail � = (�, �,�) is a function � : � → N , which maps each node to � 0 its estimated count. The algorithm constructs � when � is created, as follows: • For all the trails that are created from a proile(⟨ℓentr , ...y, ℓ ⟩, ℎ) ∈ Π (see Equation 30), the hotness of 1 � the deepest node is� (� ) = ℎ, and � (�) = 0 for all other nodes. � ℓ ,...,ℓ � 1 � • For every trail � = (�, �,�) that is obtained by grafting � � (see Equation 9), where� = (� , � ,� ) � � � � � ,...,� and � = (� , � ,� ): if � ∈ � and � ∈ � , then � (� ) = � (� ) + � � � � ,� ,...,� � � ,...,� ,� ,...,� � � � ,...,� ,� ,...,� � � ,� ,...,� � 2 � 1 � 2 � 1 � 2 � � 2 � � (� ); if � ∈ � and � ∉ � , then � (� ) = � (� ); other- � � ,...,� ,� ,...,� � ,� ,...,� � � ,...,� ,� ,...,� � � � ,...,� ,� ,...,� � � ,� ,...,� 1 � 2 � � 2 � 1 � 2 � 1 � 2 � � 2 � wise� (�) = � (�). I.e., the hotness of the grafted nodes is added together where possible, and inherited � � otherwise. • For every trail � = (�, �,�) that is produced by the extension �⊙�, where � = (� , � ,� ) and � = ⟨ℓ , ... , ℓ ⟩: � � � 1 � nodes that originate from � inherit the hotness, i.e � (.� ) = � (� ). The newly created nodes � ℓ ,...,ℓ ,� ,...,� � � ,...,� 1 � 1 � 1 � � (� ) have their hotness set to 0. � ℓ ,...,ℓ 1 � Deinition D.3. The trail hotness � is then deined as the recursive hotness sum of all the breadcrumbs in the trail �, where each subtree is weighted with the graft-point attenuation � : © ª �(�) ≡ � (����(�, �)) · � (����(�, �)) + �(� ) where � = (�, �,�)  ® � � � � ∈subtrees(�) « ¬ (34) �������(��) = {(� , � ,� ) : ����(�, �)  � ∈ �} � = {� ∈ � : � ≤ ∗ � } � � � � � � � � � � � � � � = {�  � ∈ � : � , � ∈ � } � = {� ∈ � : � ∈ � } � � � � � � � � � � � � � � The Accept predicate.Accept predicate prevents the expansion of trails after they reach the size limit. We calculate the size of a trail according to the following equation: ACM Trans. Program. Lang. Syst. 64 • Vukasovic and Prokopec �(�, �,�) ≡ codeSize(� ) (35) � ∈� � ,...,� recursionDepth Trail recursion is restricted with the function � that computes the sum of 2 of all the nodes, multiplied by a small, experimentally determined constant � (in the following, � is the Kronecker delta function, i.e. 1 ��� �,� when � = �, and 0 otherwise): ︁ ︁ recursionDepth(� ,...,� ) 1 � �(�, �,�) ≡ � · 2 − 1 where recursionDepth(� , ... , � ) = � (36) ��� 1 � � ,� � � � ∈� � ,...,� �∈{1,...,�−1} As per Equation 37 the extended trail is accepted if its relative hotness decremented by the recursion penalty �(�), is larger than the threshold function. The threshold function depends on the size of the � and trail is illustrated in the plot below. The threshold is a small, experimentally determine � if the d constant trail size �(�) is small ś hence, small trails are almost always expanded. However, after �(�)the exce size eds the value � + � ·(� − � ), the threshold starts rising linearly. A large trail can only be expanded if it is łvery hotž, but the � ℎ � � likelihood of expansion eventually approaches zero as the size of that trail approaches � the . constant �(�) �(�) − � Accept(�) ≡ Í − �(�) > threshold(�) where threshold(�) = max � , (37) ℎ � − � � � (�,ℎ)∈Π �(�) Lemma D.4. The left-hand side expression − �(�) from Equation 37 is asymptotically smaller than the the (�,ℎ)∈Π right-hand side expression threshold (�) for any call graph� and proile setΠ. Proof. For any call graph � , each call tree is either inite or ininite. If call trees are inite, then the trail size is bound (by Equation 7), which imposes an upper bound on �the(�) in the left-hand-side expression. If the call trees are ininite, then the trail size is not bound, but the call tree must contain recursive calls. The trail hotness �(�) and size�(�) grow linearly with each recursive call, but the�(p�enalty ) grows exponentially. Since the right-hand-side expression does not have any penalty, it is asymptotically larger than the left-hand □ side. Theorem D.5. When executed with the hot-code detection policies from Equations 30, 31, 32, and 37, Algorithm 2 terminates for any input call graph � and set of proilesΠ. Proof. We consider whether the repetitive steps in Algorithm 2 terminate. The op fix erationterminates ���� in a inite number of steps, as was already shown by Lemma 3.1. This leaves us with while the -loop in line 4. To show that this loop eventually terminates, we show that the condition � \ � = ∅ from Equation 31 eventually holds. Consider�the\ �set . In each loop iteration, a trail � is picked, and a set strictly of largertrails is created when extending � across its calling contexts in line 7. The trail � is then either excluded fr �om in line 10, or placed�into , meaning that it is no longer considered a top trail. We are left with a�trail \ � that does not contain�, but may instead containsubset a of trails that are strictly larger than�. If the loop iterations are repeated suiciently many times, then Accept thepredicate from Equation 37 will eventually be false for all � \ �,trails as a conse inquence of Lemma D.4. Thus, eventually � \ � stops growing. Moreover, this causes � to eventually start strictly growing, since each � frtrail om� is eventually picked byTopTrail, and moved to �. Therefore, theDetectionDone condition is eventually satisied, and this terminates the algorithm. □ ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de65 D.2 Hot-Callee Classification Details This section contains the deinitions and details of the trail-match and trail-cut operations introduced in Section 3.6, which are omitted there for simplicity. Deinition of trail-matching the operation ↓ in Equation 38 says the following: given a�trail and a no setde � of the inlining tree, ind a trail that contains the longest suix of the call � , ... , � sequence , ... , � . � ,...,� ,...,� 1 � � 1 � � � ↓ � ≡ arg max � − � such that {(� , � ,� ) ∈ � : ∃� ∈ � } ≠ ∅ (38) � ,...,� ,...,� � � � � ,...,� � 1 � � � � (� ,� ,� )∈�,∃� ∈� � � � � ,...,� � � � In the best case, the result of trail-matching is the same � that trail the current hot compilation� of starts with, i.e�. ���(� , � ) = � . Otherwise, the matching between the inlining tree and the original � is interrupte trail d � � � (indicating that some of the calls in the call � se , ..quence . , � , ... , � are cold), and some node of the inlining tree 1 � � (which comes after that interruption) matches a trail that starts with the � no (indicating de that �  � is a � � −1 � call from a cold to a hot subroutine). A callee in the inal inlining tree is considered hot if and only if there exists a matching trail: IsHot(�) ≡ ∃� ∈ �, � = � ↓ � (39) To ensure that InlineHot from Section 3.5 works, we additionally need to associate a trail to each hot compilation. For the initial set of hot subroutines the association is straightforward, and for the transitive hot compilations we use the trail-cut operation . Trail-cut operation ⊘ is formally deined in Equation 40 Given a breadcrumb � = (trail � , � ,� ) and its node � � � � ∈ � , the operation cuts the trail in half, such that the resulting trail is the subtree starting � .at node � ,...,� � � ,...,� 1 � 1 � (� , � ,� ) ⊘ � ≡ (�, �,�) where � ∈ � � � � � ,...,� � ,...,� � 1 � 1 � � = {� : � ∈ � } � = {� : � ∈ � } � ,...,� � ,...,� ,...,� � � ,...,� � ,...,� ,...,� � (40) � � 1 � � � � 1 � � � = {�  � : �  � ∈ � } � ,...,� � ,...,� ,� � ,...,� ,...,� � ,...,� ,...,� ,� � � � � � �+1 1 � � 1 � � �+1 Callee trail.The trail for the hot calle � e is determined with a combination of trail matching and trail � ,...,� 1 � cutting. First, we ind a matching trail � forin the trail-set � , and we then cut that trail at the subtree that � ,...,� 1 � corresponds to the call sequence � , ... , � : 1 � calleeTrail(�, � ) ≡ � ↓ � ⊘ � where � ∈ � ↓ � (41) � ,...,� ,...,� � ,...,� ,...,� � ,...,� � ,...,� � ,...,� ,...� 1 � � 1 � � � � � � 1 � � A hot compilation unit whose root subroutine corresponds to some�calle of theeprevious hot compilation unit is always associated with a trail determined by the expr calle ession eTrail(�, �). �(�) threshold(�) − �(�) 1.0 �(�) � + � (� − � ) � � ℎ � � � ACM Trans. Program. Lang. Syst. 
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                        Abstract

                        
                            
                                Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code MAJA VUKASOVIC , School of Electrical Engineering, University of Belgrade, Serbia ALEKSANDAR PROKOPEC , Oracle Labs, Switzerland Availability of proiling information is a major advantage of just-in-time (JIT) compilation. Proiles guide the compilation order and optimizations, thus substantially improving program performance. Ahead-of-time (AOT) compilation can also utilize proiles, obtained during separate proiling runs of the programs. Proiles can be context-sensitive, i.e., each proile entry is associated with a call-stack. To ease proile collection and reduce overheads, many systems collect partially context-sensitive proiles, which record only a call-stack suix. Despite prior related work, partially context-sensitive proiles have the potential to further improve compiler optimizations. In this paper, we describe a novel technique that exploits partially context-sensitive proiles to determine which portions of code are hot, and compile them with additional compilation budget. This technique is applicable to most AOT compilers that can access partially context-sensitive proiles, and its goal is to improve program performance without signiicantly increasing code size. The technique relies on a new hot-code-detection algorithm to reconstruct hot regions based on the partial proiles. The compilation ordering and the inlining of the compiler are modiied to exploit the information about the hot code. We formally describe the proposed algorithm and its heuristics, and then describe our implementation inside GraalVM Native Image, a state-of-the-art AOT compiler for Java. Evaluation of the proposed technique on 16 benchmarks from DaCapo, Scalabench and Renaissance suites shows a performance improvement between 22% and 40% on 4 benchmarks, and between 2.5% and 10% on 5 benchmarks. Code-size increase ranges from .8 0− 9%, where 10 benchmarks exhibit an increase of less than .5%. 2 CCS Concepts: · Software and its engineering→ Compilers; Runtime environments . Additional Key Words and Phrases: ahead-of-time compilation, inlining, inline substitution 1 INTRODUCTION Just-in-time (JIT) compilation is performed online during the execution of the program, and is done on a subset of frequently executed methods ś the other parts of the code are executed by an interpreter 38]. [ Ahead-of-time (AOT) compilation is an alternative approach in which the program is compiled to the target machine code before its execution begins. AOT compilation overcomes one of the main issues of JIT ś programs are slow during start-up due to being interpreted before getting compiled [44]. On the other hand, proile-guided optimizations (PGO) are the hallmark of JIT compilers: during the initial interpretation of the program, the runtime environment collects proile information about the program’s execution, such as the frequency of conditionals or the object types seen at diferent program locations, and relays this information to the optimizing compiler once the compilation starts. This can signiicantly improve the efectiveness of many compiler20optimizations , 29, 30, [ 34, 55, 56, 72, 76, 78, 97, 103]. Authors’ addresses: Maja Vukasovic, maja.vukasovic@etf.bg.ac.rs, School of Electrical Engineering, University of Belgrade, Belgrade, Serbia, 11000; Aleksandar Prokopec, aleksandar.prokopec@oracle.com, Oracle Labs, Zurich, Switzerland, 8004. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from permissions@acm.org. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0164-0925/2023/9-ART $15.00 https://doi.org/10.1145/3612937 ACM Trans. Program. Lang. Syst. 2 • Vukasovic and Prokopec Nevertheless, proile-driven optimizations are not restricted to JIT compilation ś in AOT compilation, the lack of runtime proiling is mitigated with oline pr68 oiling , 85, 110].runs One[common approach to oline proiling is to generate an instrumented program binary, which collects certain information about the program’s execution20 [ , 110, 120]. The information collected by the instrumented binary is then provided back to the AOT compiler, which uses the proiles to create a second, optimized binary, with the aim of improving program performance. Proiling information can be broadly categorized as context insensitive and context sensitive: the former associates each code location with at most one proile entry, while the latter associates each code location to multiple entries, each of which corresponds conte toxt a in which the respective code location was executed. In this paper, the contexts are the methods on the stack at the time when the proile was collected ś in other words, call stacks (which is usually what the term conte ł xt-sensitivež more narrowly implies). While most JIT-based runtime environments collect context-insensitive proile information for reasons of simplicity and low overhead [15, 23, 50, 80, 122], oline proiling facilitates the collection of accurate context-sensitiv 42]. e proiles [ Still, accurate collection of context-sensitive proiles can be expensive even in an oline setting (each proile entry needs to be associated with the complete call stack), so multiple approaches were developed to reduce the proiling overheads 35,[41, 47, 77, 119]. One common approach to reducing these overheads is to collect partially context-sensitive proiles , which associate each proile entry with only a conveniently selected suix of the call stack31[, 37, 101, 106, 120]. While the collection of partially context-sensitive proiles can be as eicient as context-insensitive collection, it is not clear how to best utilize partially context-sensitive proile information to aid compiler optimizations. This paper presents an algorithm for utilizing partially context-sensitive proiles to improve compilation. The algorithm uses the partial proiles to decide which larger parts of the code are łhotž, and then forms compilation units that co ł verž those łhotž parts. Its goal is toimprove performance of the generated code,without signiicantly increasing the size of the program binaries. The main idea in the proposed algorithm is to exploit partially context-sensitive proiles to opportunistically reconstruct hot portions of the code, and to improve inlining in those parts of the code. To achieve this, the algorithm modiies the compilation order and the inlining decisions of the compiler: throughout the text, we therefore refer to it ascompilation-sche a duling and inlining algorithm . In the irst phase, the algorithm łstitchesž the partially context-sensitive proiles to form abr for eadcrumb est of trailsś trees that trace parts of the program that are frequently executed. In the second phase, the algorithm starts the compilation from the roots of these hotness trails, and compiles them with more aggressive inlining decisions. The remaining cold portions of the code are thereafter compiled as they would be without the modiications. Contributions.After summarizing the problem in Section 2, we irst explain the algorithm formally, and then on the implementation level. The main contributions in this paper are as follows: • A novel compilation technique that uses partially context-sensitive proiles to improve the performance of ahead-of-time compiled programs, formalized in Section 3. This technique comprises an algorithm that opportunistically detects hot code using partial contexts, as explained in Sections 3.3 and 3.4, and modiications to existing inlining and compilation scheduling, as explained in Sections 3.5 and 3.6. • A complete, production-ready implementation of the proposed technique in GraalVM’s ahead-of-time compiler called Native Image, described in detail in Section 4. Concretely, within the existing GraalVM compiler, we modiied the compilation queue, added a new phase for the proile analysis, and used it to augment the existing inliner. • An evaluation on 16 benchmarks from DaCap46 o ], [ Scalabench108 [ ], and Renaissance99 [ ] benchmarking suites presented in Section 5. Compared to the previous implementation of the proile-guided optimizations in the Enterprise version of Native Image, the proposed algorithm improves performance in the range ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 3 of 22% - 40% on 4 benchmarks, and 2.5% - 10% range on 5 benchmarks. Our approach increases the compiled-code size between .8%0and 9%; for 10 out of 16 benchmarks the compiled-code size is increased only up to .25%. We also compared the introduced changes against GraalVM Native Image without PGO, standard GraalVM compiler in JIT mode, and HotSpot’s C2 compiler in JIT mode. After the main results, the evaluation shows how the algorithm parameters were tuned for performance, and presents a breakdown of performance-contributing factors. In Section 7, we present an overview of related work in the area of proiling, proile-guided optimizations, inlining and ahead-of-time compilation, and we conclude the paper in Section 8. 2 PROBLEM STATEMENT In this paper, we address the problem of utilizing accurate partially context-sensitive execution proiles to improve compilation-scheduling and inlining dein cisions a way thatdecreases the running time of compiled programs without signiicantly increasing the binar . Concr y size etely, the input to the problem is a set of proile entries, where each entry consists of a partial calling context, and the execution count associated with that calling context. Here, proile entries include at least those program locations that are conditional branches and virtual (indirect) calls. Each entry includes the execution count (for conditionals), or a mapping from the receiver-type to the number of occurrences of that type (for virtual calls). The partial term means that calling contexts do not consist of all the procedure calls starting from the program entry point and up to the proiled location, but only of some suix thereof. Byaccurate, we mean that there exists a proile entry for each proiled program location that was executed during the proiling run, and that the respective execution counts are exact (not approximate). Furthermore, an important assumption that we make on the input is that the set of proile entries forms compilation-unit-wise a partition . To explain this, consider the adjacent igure that shows an example acti- F G vation tree. An activation tree is a tree that contains all call stacks that B D E F exist during some execution of the program (this is formally deined in Section 3). Each node in the activation tree represents one subroutine C A D E of the program ś for example, the programentry point subroutine is the root of the tree, while the subroutines A and B are invoked from the entry point subroutine. entry point A compilation unit consists of a root subroutine, along with a con- nected set of subroutines that were inlined into the root subroutine. In Activation tree and its compilation units the igure, compilation units are delineated with a dashed line. A set of proile entries forms a compilation-unit-wise partition if (1) each subroutine in the compiled program on which the proiles were obtained is a root of at most one compilation unit, (2) each proile entry has a calling context that corresponds to some compilation unit (i.e. starts the subroutine that is the root of the compilation unit, and contains only subroutines within that compilation unit). In the example, there are four compilation units: one roentry oted at point, one at A, one at D, and another at E. The calling conteentry xts point→A→C and A→D are valid calling contexts in a compilation-unit-wise partition, because each of them starts with the compilation-unit root, and is completely within that compilation unit. The context E→G is not valid in that compilation-unit-wise partition, because it does not start with a compilation-unit root. The context entry point→B→D is also not valid, because it is not conined within a single compilation unit. Our assumption is that the input proile contains only valid entries for some compilation-unit-wise partition. Rationale.The constraints imposed on the input proiles may seem artiicial at irst glance, but they are a natural consequence of performing instrumentation within compilation units. Each position in a compilation unit (which consists of inlined subroutines), is assigned a set of unique counters, each corresponding to a calling within context ACM Trans. Program. Lang. Syst. 4 • Vukasovic and Prokopec that compilation unit. The GraalVM Native Image, in which we implemented the proposed algorithm, collects accurate, partially context-sensitive conditional and receiver-type proiles, which form a compilation-unit-wise partition. Native Image does so by producing an instrumented binary of the program, which is used to collect the proiles. The optimized binary is then created using these proiles. This two-tier approach is common: similar instrumented binaries can be created by GCC [20], LLVM [16], and Scala Native [110]. AOT compilation of a program assumes that all of the program’s methods have been compiled before the execution of the program, with the exception of those methods which are inlined at all callsites. Most of the methods contain one or more callsites, i.e. locations from which other methods are invoked (callees). During a single compilation of a method, a decision is made whether a callee at each callsite should be inlined or not. If the callee method is inlined, its body replaces the invocation at a callsite, and transitively its callees are considered for inlining. The callees that remain non-inlined are left to be compiled later in the compilation process. In this setting, a method is usually compiled only once. Since the same method can be found at multiple callsites, to avoid multiple compilations of the same method, most AOT compilers compile the methods in a particular order. Since the size and the content of the compilation units are not pre-compilation determined, the compilation order (i.esche . dule) itself is determined during the compilation. The usual compilation order starts from the entry points of the program, i.e. the methods in which the program execution starts, such as main or thread entry points. These methods are compiled irst, then all their callees are transitively scheduled in a queue, and compiled as previously described, if they had not been compiled already. The algorithm in this paper separates hot compilation units from the cold ones, and as such, has to modify the compilation process to ensure that no method would be compiled as cold if the heuristic determines that it is hot when invoked from another callsite. If the method were to be irst compiled as cold, that method could not be compiled again as a hot compilation unit. This is the reason why our algorithm irst compiles all the hot compilation units, and only then proceeds to compiling cold compilation units. This cannot be guaranteed only by taking the methods from the compilation queue following the original order. The motivation for focusing on compilation-scheduling and inlining is that many optimizing compilers focus primarily on intraprocedural optimizations 23, 66, 95,[120]. For these compilers, inlining is an enabler for other compiler optimizations, because it extends "what the compiler sees". By having compilation units cover "hot code", we expect to beneit most from intraprocedural optimizations such as escape analysis 112], path-duplication [ 88],[ constant folding, and others [98]. Outline of the proposed solution.Given a set of partially context-sensitive proiles, some of which have higher execution counts than others (i.e. are "hotter"), and thus represent small fragments of the program regions that are globally hot, our algorithm is tasked with inding compilation units that cover "hot" parts of the program; in essence, to connect those hot fragments. While inlining algorithms typically start with an individual subroutine and extend its compilation unit top-do in wn a manner ś by exploring the call tree from the compilation-unit root towards its callees until deciding to cease exploration and settling for a set of leaf nodes ś our proposed algorithm works bottom-up: it irst identiies the hottest partially context-sensitive entries, which represent hot compilation units. Our algorithm uses these proiles to form a for brest eadcrumb of trailsś trees that represent some portion of hot code. The algorithm then iteratively goes "upwards" ś it extends the trails across likely callers, and grafts together trails that share common methods. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 5 Initial hot proﬁles Extended calling contexts Merged calling contexts Hot compilation units The inal set of breadcrumb trails represents hot entry points ś compilation units for which additional compilation budget should be allocated. The breadcrumb trails are not used as actual inlining plans, but instead as inlining hints ś they bias the inliner to explore and inline along those paths, because this leads to code in which most execution time is spent. Once these hot parts of the program are compiled, the rest of the program is compiled in a regular manner. Concretely, the inlining suggestions implied by the breadcrumb trails are mixed with the existing heuristics of the inliner. 3 COMPILATION-SCHEDULING AND INLINING ALGORITHM In this section, we formally deine the proposed compilation-scheduling and inlining algorithm. We present the algorithm in a top-down manner, starting with a high-level description, and we then gradually increase the level of detail. Inputs. The input of the algorithm consists of the call graph of the program, along with the partial context- sensitive execution proiles. Each subroutine �∈ � of the program corresponds to one vertex in the call graph � = (�, � ⊆ �× �), and a call from subroutine � to another subroutine� corresponds to a directed edge�  � 1 2 1 2 of the graph.Partial context-sensitive execution pris oile a mapping from calling contexts to execution counts, where a calling context represents some suix of the program-counters on the call-stack, and the corresponding execution count represents how many times that call-stack occurred during the execution. calling Each contextis a list of code locations ℓ , ℓ , . . . , ℓ that are on the call-stack. Locations ℓ , ℓ , . . . , ℓ represent the callsites at 1 2 � 1 2 �−1 which the previous subroutine calls the next subroutine on the stack, ℓ repr andesents the speciic code location in the callee at the top of the call-stack. The case�when = 1 is calleconte d a xt-insensitive proile , and the case where, for every context,� corresponds to the number of calls on the call-stack, is calle fully conte d a xt-sensitive proile. Input simpliications. We deined the set of edges in the call graph as the subset �×of �, where � is the set of subroutines in the program. This implies that each subr � outine can call another subroutine � on at most 1 2 one callsite. In actual programs, a subroutine � may contain multiple callsites to another subr � .outine We now 1 2 show that the single-edge-per-vertex-pair limitation is inconsequential, because the multi-edged call graph can be reduced to the simpler representation. Discussion.The implementation must accept a call graph in which each pair of vertices may be connected by any number of edges. The multi-edged graph can be transformed into a single-edged graph in a way that the output of the algorithm in Listing 1 can be mapped back to a solution for the multi-edged graph.�Each of the vertex multi-edged call graph is translated to a subgraph with � as the thestarting vertex of the subgraph. For each edge � → � at location �in the subroutine represented by the verte�xto another subroutine represented by a vertex � , a virtual verte�x is inserted, and directed edges � → � and � → � are added. This transformation �,� �,� �,� corresponds to outlining each callsite of the original program into bridge a separate method. The resulting compilation schedule that the Algorithm 1 creates may mention virtual � in vertices its edges �,� � → � or � → � . Since each vertex� points to exactly one original v�erte , each x � → � edge �,� �,� �,� �,� is replaced with � → � . Similarly, since each virtual � verte is xpointed to by exactly one verte � ,xeach � �,� ACM Trans. Program. Lang. Syst. 6 • Vukasovic and Prokopec G.apply=8 F.apply G.apply F.apply=8 G.apply=8 F.apply=8 G.apply=8 foreach:3 F.apply=8 foreach:3 foreach:3 foreach foreach:3 foreach=1 foreach=1 F.apply=8 G.apply=8 min:13 max:19 min:13 max:19 foreach:3 foreach:3 foreach=1 foreach=1 min max min:13 max:19 min:13 max:19 min=1 max=1 min=1 max=1 main:7 main:8 main:7 main:8 main:7 main:8 main:7 main:8 main Partial Another partial Context-insensitive Fully context-sensitive Call graph context-sensitive proﬁle context-sensitive proﬁle proﬁle proﬁle Fig. 1. Input Examples for the Algorithm � → � edge is replaced with � → � . The transformed compilation schedule can have multiple edges at the �,� � same location �ś these represent virtual calls. In conclusion, any input call graph can be transformed into a call graph where every two vertices are connected 1 void foreach (int [] xs , int -> void f) { with at most one edge. We will introduce a simpliied 2 for ( int i = 0; i < xs. length ; i++) 3 f. apply (xs[i]); formalization for clarity purposes, but it solves a problem 4 } that is equivalent to our concrete compilation problem. Outputs. The output of the algorithm is a valid compi- 6 void main ( int [] args ) { 7 min( args ); lation schedule, and a mapping from compilation units 8 max( args ); to the compilation budget.compilation A schedule is a 9 } directed graph, in which each vertex corresponds to a 11 int min( int [] xs) { compilation unit, and each directed edge corresponds to 12 int m = Integer . MAX_VALUE ; a call from a compilation � to unit a compilation unit 13 foreach (xs , x -> if (x < m) m = x); |                           {z                           } 14 return m; �. Compilation unit � is a subroutine � of the program, F.apply along with the subroutines inline �d. A into compila- 15 } tion schedule is valid if there exists a compilation unit 17 int max( int [] xs) { whose root subroutine corresponds to the entry-point 18 int m = Integer . MIN_VALUE ; to the program, and if there is a directed edge for each 19 foreach (xs , x -> if (x > m) m = x); |                           {z                           } 20 return m; call (corresponding to the original program) between two G.apply compilation units. 21 } Inlining [39, 63, 104] is an optimization in which the Listing 1. Example Program call to a subroutine is replaced with a copy of the code belonging to that subroutine. We say that a compilation unit� calls another compilation unit � if there is a code location � that incalls the root subroutine � of�. A compilation schedule valid isif there exists a compilation unit whose root subroutine corresponds to the entry-point to the program, and if there is a directed edge for each call between two compilation Compilation units. budget is a function that assigns the amount of computational resources that an optimizing compiler is allowed to spend when compiling a particular compilation unit. Example input.The program in Listing 1 computes the smallest and the largest integer from the given list of arguments. This program relies on a generic foreach subroutine that applies a lambda (i.e. function f to value) each integer in a given array. Starting with main thesubroutine, the program consecutively calls minthe and max subroutines, each of which invokes foreach with a lambda value that tracks the smallest or the largest integer, respectively. Note that, from the deinitionforeach of the subroutine, it is impossible to tell what is the exact implementation of the lamb f ś this da depends on where foreach is called from. We say that the call f isto indire[91]. ct On the other hand, calls max to , min and foreach are direct . ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 7 The corresponding call graph is shown in Figure 1. We void foreach (int [] xs , int -> void f) { examine several proiles that track the target-subroutine for ( int i = 0; i < xs. length ; i++) f. apply (xs[i]); invocation counts at the callsites. Each calling context is shown as a stack of method-line-number pairs, and each calling context is mapped to the invocation counts void main ( int [] args ) { int min = Integer . MAX_VALUE ; of all the possible call targets. The two lambda values foreach (args , x -> if (x < m) m = x); used by min and max are named F and G, respectively. int max = Integer . MIN_VALUE ; The irst partially context-sensitive proile "cuts" the call- foreach (args , x -> if (x > m) m = x); stacks in themin and max subroutines, so theforeach calling context counts calls toF band othG lambdas. In Listing 2. Input Example the second partially context-sensitive proile, the calling contexts are "cut" inmain, which makes the twoforeach calling contexts more precise ś it is now clear F is that only invoked when foreach gets called from min. We can conclude that the context-insensitive proile does not relay less information than the irst partially context- sensitive proile, in the following sense. Note that min the call at main:7 to is direct, meaning that main:7 is the only callsite minof ś the entry min:13 in the context-insensitive proile can be extended and merged with main:7 (and similarly max:19 withmain:8), which yields a partially context-sensitive proile that therepresents same execution . Furthermore, the fully context-sensitive proile does not relay more information than the second partially context-sensitive proile. Input simpliication exampleListing . 2 contains a modiied version of the program from Listing 1. Instead of invoking metho min ds and max from the foreach main method, their bodies are manually inlined directly maininto methothe d. foreach Thus, method main contains two callsites that target the same metho foreach d . loc1 loc2 In the adjacent igure, two virtual vertices loc1 and loc2 were added to the main main method main from Listing 2 as the callsites outlined into the bridge methods. Example outputs. Figure 2 shows several possible outputs of the algorithm. Compilation schedule I consists of two compilation units ś the compilation unit rooted atmain inlines the subroutines min and max, each of which calls the second compilation unit rooted at foreach. Since the second compilation unit is called from two calling foreach contexts, polymorphically the inlines both implementations applyof [78]. In compilation schedule II,main the compilation unit does not inline any subroutines, somin and max are the roots of two separate compilation units, both of which inline a separate copy offoreach. The beneit of schedule II is that foreach can inline a single lambda, and avoid a type-check. In compilation schedule III, no inlining is carried out ś in this case, each compilation unit consists of a single subroutine. The last compilation schedule is not valid, because it does not include the edge G.apply for the call to (which can occur in execution). F.apply G.apply F.apply G.apply F.apply F.apply G.apply foreach foreach foreach foreach foreach min max min max min max min max Compilation Compilation unit root main main main main Compilation schedule I Compilation schedule II Compilation schedule III Invalid compilation schedule Fig. 2. Output Examples for the Algorithm ACM Trans. Program. Lang. Syst. 8 • Vukasovic and Prokopec HOT HOT HOT HOT F.apply G.apply F.apply G.apply F.apply G.apply foreach G.apply foreach F.apply foreach COLD COLD COLD COLD foreach foreach min max max main main main min main main Initial state After compiling foreach After compiling G.apply After compiling main Final output Fig. 3. Example of the Compilation-Ordering High-level description. The Algorithm 1 (described Algorithm 1:Compilation Scheduling shortly) uses the call graph and the partially context- input :call graph � , entry-point�, proileΠ sensitive proile information to deduce which parts of output :compilation schedule Σ, budget � the program are hot, and to invest more efort into com- 1 Σ = ∅; � = ∅; cold = { � } ; piling those parts. To do this, it separates compilation 2 hot = DetectHot(� , Π); units into hot and cold. In this paper, the mapping from 3 whilehot ≠ ∅ do compilation units to the compilation budget is binary ś 4 hot = hot \ { � } : � ∈ hot ; � � if a compilation unit is hot, it gets an increased compi- 5 � = InlineHot(� ); lation budget, and if it is cold, it gets the default budget. 6 Σ = Σ ∪ { � }; � = � ∪ { � }; The motivation is to increase the degree of optimization 7 cold = cold \ { � } ; in code that is frequently executed, but avoid bloating 8 for �∈ callees(� )\ (Σ ∪ hot) do the size of the code that does not signiicantly contribute 9 ifIsHot(S) then hot = hot ∪ { � }; to the total execution time. 10 else cold = cold ∪ { � }; The algorithm maintains two queues hot śand cold. It 11 end irst picks the initial set of hot subroutines, and places 12 end them on the hot queue. Then, it iteratively removes 13 whilecold ≠ ∅ do a hot subroutine, and performs inlining to create the 14 cold = cold \ { � } : � ∈ cold ; � � compilation unit that starts with that hot subroutine. If, 15 � = InlineCold(� ); after inlining, the hot compilation unit calls other sub- 16 Σ = Σ ∪ { � } ; routines (i.e. callees) that were not previously pushed 17 for �∈ callees(� )\ (Σ ∪ cold) do to the queue, then the algorithm places each such callee 18 cold = cold ∪ { � }; on either the hot queue or the cold queue. After the hot 19 end queue becomes empty, the algorithm schedules the re- 20 end maining cold compilation units (including the program entry-point), and iteratively removes the cold subrou- tines until the cold queue is empty. This high-level description is captured in Algorithm 1, while more detailed information is provided in the following subsections. Example execution.To see how the algorithm works, consider the program from the earlier example, whose compilation is in Figure 3. The algorithm irst foreach puts the subroutine to the hot list, andmain the subroutine (i.e. program entry-point) to the cold list. It then remo foreach ves from the hot list, inlines F.apply, and decides that there is no budget left for inlining G.apply. The algorithm nevertheless concludesG.apply that is hot, and places it on the hot list. After the hot list becomes empty, the algorithmmain sche,dules and refrains from inlining due to low frequency of the callsites min and ś max are pushed to the cold list. Importantly, the algorithm does not inline hot compilation units into cold compilationmin units norś max neither inlines foreach. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 9 Discussion.There are several important details that we must clarify. First, the algorithm needs a concrete set of steps to decide on the initial set of hot subroutines. Second, subroutines must be expanded to compilation units with a concrete inlining policy. Third, after a hot compilation unit is formed, the algorithm must decide which of the remaining callees are hot, and which are cold. In Algorithm 1, these concerns are captured with procedur DetectHo es t, InlineHot, InlineCold and IsHot, respectively. To drive the behavior of these procedures, our algorithm estimates which subroutines are hot in a particular calling context. A subroutine hot either is if the estimated time spent exclusively in that subroutine (without the callees) exceeds some ixed percentage � of the total time spent in the program, or if the subroutine transitively calls other hot subroutines, up to some point determined by the compilation budget. The rest of this section contains a detailed description of how the aforementioned procedures work. The speciics of the algorithm are thus divided into three components: (1) DetectHot: the procedure that constructs breadcrumb trails using the call �graph and the partial context-sensitive proile �, described in Section 3.3. (2) InlineHot and InlineCold: the modiied inlining algorithm guides its inlining decisions using the breadcrumb-trail information, described in Section 3.5. (3) IsHot: the procedure that uses the breadcrumb trails to separate callees of a compilation unit into hot and cold subroutines, described in Section 3.6. 3.1 Call Trees To precisely deine breadcrumb trails, we irst express what we presume under the term call tree. Notation.Before we deine call trees, we adopt the following scheme for referring to nodes within trees. Let’s assume that every node in the tree is associated with root some subroutine� (multiple nodes may be associated with the same subroutine). s ,s 1 2 The notation� then refers to a node that is reached by starting from the root � ,� ,...,� 1 2 � s ,s ,s 1 2 3 of the tree (whose subroutine is � ), and following the sequence of nodes whose 1 s s ,s ,s ,s subroutines are� , � , and so on, until reaching a node whose subroutine � . In is 1 2 3 4 2 3 � other words, we treat the tree as a preix tree [73], and the sequence � , � , . . . , � 1 2 � as the preix stored in the tree. For our purposes, the node � will represent � ,� ,...,� 1 2 � a call stack of subroutines. This is illustrated in the adjacent igure. The notation� or � , which does not have a sequence in the subscript, refers to any node in the tree, and is used when the preix of the node is not important in the discussion. When the subscript is a single-element sequence, we take care to disambiguate what we mean in the text. Call graphs. For a speciic call graph � , we rely on a function �������(�) that returns the set of subroutines that � can invoke, according to the call graph � . Note that, in the previous example ���, ���� (foreach) consists Listing 1 ofF.apply and G.apply. �������(�) ≡ {� : �→ � ∈ �} where � = (�, � ⊆ �× �) (1) � 2 2 For readability, we omit the inde � later x in the text ś we always mean łthe � that is compiledž. We deine the root of a call tree as the ancestor node of all the other common nodes ( inimum ): ����(�, �) = inf � (2) We now introduce two partial orders on (ininite) graphs. subset Therelation between graphs � = (� , � ) 1 1 1 and � = (� , � ) is deined as follows: 2 2 2 (� , � ) ⊆ (� , � ) ≡ � ⊆ � ∧ � ⊆ � (3) 1 1 2 2 1 2 1 2 ACM Trans. Program. Lang. Syst. 10 • Vukasovic and Prokopec Graph � = (� , � ) nests within the graph � = (� , � ) if and only�if and � induce partial orders�onand 1 1 1 2 2 2 1 2 1 � (i.e�. and � are directed acyclic graphs), � and � share a common inimum (i.e. they havecommon a root), 2 1 2 1 2 and � is a subset of � (note that notation����(�, �) implies that unique the least element �ofexists, further 1 2 implying that � and � must be connected and acyclic): 1 2 (� , � ) ⋖ (� , � ) ≡ ����(� , � ) = ����(� , � ) ∧ (� , � ) ⊆ (� , � ) (4) 1 1 2 2 1 1 2 2 1 1 2 2 The subset and nests-within relations are illustrated by the examples in the following igu � (rwhich e. The graph consists of two disconnected components) is not a call tree, but is a subset of the�call . Thetr call ee tr� ee is 2 3 nested within � , but the call tr� ee is not nested within � , because they do not share a common root. 4 5 6 e e e e 1 1 1 1 s s 3 2 3 s s s s s s s s 2 3 2 3 2 3 2 3 ⊆ ⋖ ⋖ s s s 4 4 5 s s s s s s s s s s 4 4 5 4 4 4 5 4 4 5 G C C C C C 1 2 3 4 5 6 Call trees. Next, we introduce the termcall tree. Informally, a call tree is a preix tree of all the possible call stacks of a given program. Let a program � = (�, �) consist of the call graph � and the entry-point subroutine �. The unfolding of a program P, � (�) is a tuple(�, �) composed of a set of nodes� and a set of edges�, in which the root node corresponds to the entry point� of�, each node � corresponds to a call stack ending with the subroutine �,...,� � = ���(� ), and the set of children�of is� such that � ∈ �������(� ). � �,...,� �,...,� �,...,� ,� �+1 � � � � � �+1 � (�) ≡ (�, � ⊆ � × � ) where � ∈ � ∧ � ∈ �������(� ) ⇔ � ∈ � ⇔ � ∈ � ∧ (5) �+1 � � �,...,� �,...,� ,� � � �+1 � ∈ �������(� ) ⇔ � ∈ � ⇔ � → � ∈ � �+1 � � �,...,� �,...,� �,...,� ,� � � � �+1 Note that any call tr� eeis nested within the unfolding � (�) of the program, that is, � ⋖ � (�). The following igure shows two call graphs, and their corresponding call-tree examples, For a call graph on the left, the corresponding call tree is inite, while in case of the call graph on the right, because it contains a cycle, a call tree is potentially ininite, which we demonstrate on the rightmost tree in the igure. e e 1 1 1 e e 1 1 � e ,s � � 1 2 e ,s ,s ,s e ,s 1 2 3 4 � s 1 3 s s e ,s 2 3 4 1 2 s s 2 3 s s s s � 2 3 2 4 e ,s ,s ,s ,s ,s ,s 1 2 3 4 2 3 4 � s s s � e ,s ,s 3 4 e ,s ,s 1 3 5 1 2 4 s s s s 4 4 5 s 4 5 3 ... G ,e U(G ,e ) G ,e U(G ,e ) 1 1 1 1 2 2 2 2 Example. The previous igure illustrates call trees and the unfolding of a program on several examples. These examples correspond to the program from Listing 1. The leftmost tree represents the unfolding of a program, and the remaining two trees represent the examples of the call trees, which nest within the irst tree. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 11 3.2 Breadcrumb Trails Now we deine thebreadcrumb trails . Informally, they are similar to call trees, except they do not need to start with the entry point G.apply F.apply of the program. In another words, they do not need to be nested foreach in a call tree per Equation 4. Instead, breadcrumb a trailof the foreach F.apply G.apply program � is any inite, connected subgraph of some call tree of min max min foreach the program �. We deine the set of breadcrumb trails of program main � as follows (beloℵwis , the size of the set of natural numb N,ers Breadcrumb-trail examples so we use |� | < ℵ to say "inite"): �(�) ≡ {(�, �) : |� | < ℵ ∧ � ⊆ � × � ∧∃�, � = ����(�, �) ∧∃� ∈ ℂ(�),(�, �) ⊆ �} (6) By Equation 6, a breadcrumb trail � is generally not a call tree, and its main restriction is that the children of each node � are from������(����(�)). The breadcrumb trail � = (�, �) is, however, a tree, with a well-deined root ����(�, �). A node in the breadcrumb trail is calle breadcrumb d a . Note, that a breadcrumb trail is not just a call tree because each node in the call tree must contain all the callees of the corresponding subroutine, whereas in a trail it does not. Consider the example breadcrumb trails shown below. The trailmin with root theleads up toF.apply, while the trail withforeach the root leads to bothF.apply and G.apply ś both of them serve as recipes for inding the hot subroutines starting from speciic calls. In this paper, the use-case for breadcrumb trails is, loosely speaking, to transitively connect a call to its łhotž callees, that is, subroutines in which most execution time is spent. However, the deinition does not mandate that the subroutines are łhotž ś a breadcrumb trail could be used for other purposes too. Note that, in the igure, some nodes are annotated with the orange color. The root is always annotated with orange, but any other node of the breadcrumb trail can also be annotated. These annotated nodes are calle graftd points , and the respective trails are calle annotate d d breadcrumb trails . The set of annotated breadcrumb trails of a program � are deined as follows: �(�) ≡ {(�, �,�) : (�, �) ∈ �(�) ∧ � ⊆ � ∧ ����(�, �) ∈ �} (7) In the remaining text, we will use thetrail term to refer to annotated breadcrumb trails. The purpose of the graft points will be to annotate the places where two trails can be grafted to each other. Operations.We now deine operations on the annotated breadcrumb trails, which are central in the rest of the algorithm. Assume that we have a relatively short breadcrumb trail ś it only describes the path to the hot code from callers that are łvery close.ž Given such a trail � = (�, �,�) that starts with����(�) = ����(�, �), it is of interest to expand it with a calling ℓ ,conte . . . , ℓ xt . The operation⊙, callebr deadcrumb-trail expansion , 1 � produces a new trail that starts with a chain of nodes that correspond ℓ , .to . . , ℓ , and in which node ℓ points to 1 � � ����(�). The restriction here is that ℓ calls ���(����(�)). In the adjacent igure, the trail rootedforeach at is ACM Trans. Program. Lang. Syst. 12 • Vukasovic and Prokopec expanded to a trail rooted main at , allowing the hot code to be detected from łfurther awayž. (�, �,�) ⊙ ⟨ℓ ,..., ℓ ⟩ ≡ ({� ,..., � }∪ � ,{�  � ,..., �  ����(� , � )}∪ � , � ∪ � ) 1 � ℓ ℓ ,...,ℓ 0 ℓ ℓ ,ℓ ℓ ,...,ℓ 0 0 0 ℓ 0 1 1 � 1 1 2 1 � 1 � = {� : � ∈ � } � = {� : � ∈ �} (8) 0 ℓ ,...,ℓ ,� ,...,� � ,...,� 0 ℓ ,...,ℓ ,� ,...,� � ,...,� 1 � 1 � 1 � 1 � 1 � 1 � � = {� → � : � → � ∈ �} 0 ℓ ,...,ℓ ,� ,...,� ℓ ,...,ℓ ,� ,...,� ,� � ,...,� � ,...,� ,� 1 � 1 � 1 � 1 � �+1 1 � 1 � �+1 (� , � , � ) 0 0 0 (� , � , �) Calling context F.apply ⟨ℓ ,...,ℓ ⟩ 1 � F.apply foreach min main foreach min main Breadcrumb-trail In Equation 8, existing nodes are renamed so that they expansion include the ℓ , . . . , ℓ preix, and a new set of nodes and (� , � , � ) (� , � , �) 1 � 0 0 0 (�ξ, �ξ, �ξ) directed edges is additionally included for each call in the F.apply F.apply G.apply calling conte ℓ xt , . . . , ℓ . 1 � G.apply Assume now that we have several trails that contain a foreach foreach �min,foreach foreach breadcrumb for the same subroutine �. When considering min min which callees� in are łimportantž (as explained later), one needs to inspect the breadcrumbs for � in all such trails. Breadcrumb-trail grafting This is inconvenient ś it is much easier for a compiler to inspect a single breadcrumb whenever it needs to decide is łimportantž. Therefore, we deine another breadcrumb-trail operation , callegrafting d , which attaches a trail (� , � ,� ) to a node � within another trail (�, �,�). In the adjacent igure, grafting adds the callsite G.apply of � � � to the foreach node within the min trail. The grafting in this particular example is correct, albeit not too useful in practice ś in our program, methoG.apply d is obviously never invoked from the calling context that starts withmin. More formally, given a target �trail = (�, �,�), its breadcrumb� ∈ � and a trail � = (� , � ,� ) such � ,...,� � � � 1 � that ���(� ) = ���(����(�)), i.e�. = ���(����(� , � )), the grafting � � produces a copy of� in � ,...,� � � � � 1 � � ,...,� 1 � which the node� has an additional subtree fr�om for each child no�de ∈ �ℎ�����(�����(�)) such � ,...,� � ,� 1 � � 2 that ∄� ∈ �ℎ�����(�� ), while all the subtrees of the childr � ∈ en �ℎ�����(�����(�)) for which � ,...,� ,� � ,...,� � 1 � 2 1 � ∃� ∈ �ℎ�����(�� ) are recursively grafted. � ,...,� ,� � ,...,� 1 � 2 1 � (� , � ,� ) (�, �,�) ≡ (� ∪ � , � ∪ � ,� ∪ � ) where ����(� , � ) = � � ∈ � � � � � 0 0 0 � � � � ,...,� � ,...,� 1 � � = {� : � ∈ � } � = {� : � ∈ � } 0 � ,...,� ,� ,...,� � ,� ,...,� � 0 � ,...,� ,� ,...,� � ,� ,...,� � (9) 1 � 2 � � 2 � 1 � 2 � � 2 � � = {�  � : �  � ∈ � } 0 � ,...,� ,� ,...,� � ,...,� ,� ,...,� ,� � ,� ,...,� � ,� ,...,� ,� � 1 � 2 � 1 � 2 � � +1 � 2 � � 2 � � +1 If we adopt the convention that(� , � ,� ) ∪ (�, �,�) ≡ (� ∪ �, � ∪ �,� ∪ �) and that ����(� , � ,� ) ≡ � � � � � � � � � ����(� , � ), then we can deine grafting more concisely as follows: � � � (�, �,�) ≡ (�⊙ ⟨� , ... , � ⟩) ∪ (�, �,�) where ����(�) = � � ∈ � (10) � 1 �−1 � � ,...,� � ,...,�� 1 � Table 1 summarizes the most important symbols introduced so far. Having deined the basic trail operations, we can now describe the hot-code detection algorithm. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 13 Symbol Name Meaning (�, �) Program Call graph � with a distinguished entry-p�oint . Set of subroutines that can be invoked from a subroutine � in a (Eq. 1) �������(�) Callees call-graph � (i.e. outgoing edges �of ). A node that corresponds to a call stack of subroutines � , � , ..., 1 2 � Node (in a tree structure) � ,...,� 1 � � in the call-tree (or a trail) roote � .d at � 1 Tree � nests within the tr� ee if they have the common root, 1 2 (Eq. 4) � ⋖ � Nests within 1 2 and tree � is a subset of � . 1 2 Unfolding of a programTree in which the root is the entry point �, and each node � �,...,� � (�, �) (Eq. 5) (�, �) has a set of childr�en , where � ∈ �������(� ). �,...,� ,� +1 �+1 � � � � Preix tree of all the possible call stacks of a given program � (�, �) Call tree (�, �). Set of inite tre� es= (�, � ) such that � is a subset of some call (Eq. 6) �(�, �) Breadcrumb trails tree � , i.e�. ⊆ � (�, �). Set of trees� = (�, �,� ), such that each trail � = (�, � ) is (Eq. 7) �(�, �) Annotated trails annotated with a set of graft points � ⊆ � . Operation that attaches the calling conte ℓ ,.xt .., ℓ on top of the 1 � (Eq. 8) �⊙ ⟨ℓ ,..., ℓ ⟩ Trail expansion 1 � root of the trail �. Operation that attaches the trail � to an existing node � � ,...,� (Eq. 9) 1 � � � Trail grafting � ,...,� 1 � within another trail �. Table 1. Summary of Key Symbols from Sections 3.1 and 3.2 3.3 Hot-Code Detection We established that the code from Algorithm 1 separates the call-graph into hot and cold regions. The hot regions of the call graph consist of code that is frequently executed, along with the calling context that is suiciently large to include the relationships required for code optimizations. The purpose of the breadcrumb trails from the previous section is to delimit these hot regions. The breadcrumb trails that delimit the hot code, which the scheduling algorithm relies on, must be derived from the program’s execution proile. Consider the task of constructing the trails from a fully context-sensitive proile ś one way to achieve this would be to create trails for the set of calling contexts whose execution count is above a threshold � , and to then graft them all together. However, the input to our algorithm partially is a context-sensitive proile. The hottest calling contexts in such a proile are typically too short to connect code regions in a useful manner, so the corresponding trails must be expanded until the covered part of the call tree is suiciently large for subsequent compiler optimizations to potentially improve performance. The algorithm is thus posed with several challenges: selecting a good set of initial calling contexts, choosing the beneicial calling contexts to speculatively expand across, and knowing when to stop the expansion ⊙ and grafting operations. We call this part of the algorithm hot-code detection . High-level description. The algorithm starts by selecting a set of initial hot contexts, and converts them to trails. These trails are grafted together wherever this is possible. The following process is then repeated until reaching a termination condition (Section 3.4): the most favorable trail is selected, and expanded across calling contexts in which it is hot. These expanded trails are then grafted into other trails from the trail set, or placed back into the trail set if grafting is not possible. ACM Trans. Program. Lang. Syst. 14 • Vukasovic and Prokopec hotness(ctx)>� < > < > "<"=8 ">"=8 < > < > G.apply:19 F.apply G.apply F.apply G.apply F.apply:13 foreach:3 foreach:3 F.apply G.apply F.apply G.apply Graft Expand trails foreach foreach foreach=1 foreach=1 Convert foreach foreach hot contexts trails foreach across contexts min:13 max:19 to trails min max foreach=1 foreach=1 min=1 max=1 min:13 max:19 main:7 main:8 Example detection.Consider the scenario in the preceding igure. The initial set of proiles (on the left) is partially context-sensitive, so that some proiles have the context length � = 1, and some have � = 2. The algorithm irst picks calling contexts whose proile-counts exceed a predetermine�d: these valueare foreach→F.apply→‘<‘, and foreach→G.apply→‘>‘. These calling contexts are then converted to the initial set of breadcrumb trails. In the next step, each trail � is grafted onto nodes � of other trails such that ���(����(�)) = ���(� ) ś � ,...,� � ,...,� 1 � 1 � in the preceding example, the irst foreach trail (which calls F.apply) is grafted to the second foreach (which calls G.apply). The algorithm then searches the proiles to identify the possibleforeach callers , determines of that min and max are the most common callers, and expands foreach along each of these calling contexts. The two aforementioned steps, grafting and expansion, are repeated consecutively until the algorithm decides that it ran out of budget. In this example, the algorithm stops after producing two trails that are roote mind and at the max subroutines. Note that the calling contexts in the previous example are suiciently long to allow static analysis to determine that G.apply is never called frmin om, and that F.apply is never called frmax om. In other words, the resulting trails are not always nested within a minimum call tree. We do not remove unreachable calls during hot-code detection, because compilers have optimizations that remove such calls after callees get inlined into a single compilation unit 43, 84[, 87, 112, 118]; moreover, state-of-the-art inlining algorithms use datalow analyses to simplify the call tree before inlining 62, 81 happ , 97ens , 107[]. In other words, we later ensure that the inliner neither inlines G.apply frommin’s calling context, F.apply nor frommax’s calling context, even though the trails contain these calls. Therefore, we do not simplify the trails during hot-code detection, since in our implementation, the inliner prunes the trail later. Trail-set operations.To formally describe the algorithm, we deine two convenience operations on sets of trails, called union-grafting ∪ and self-root-grafting . Union-grafting operation merges two sets of trails together, ∇���� while the self-root-grafting operation grafts a single trail from the set onto other trails from the same set. To determine the order in which certain operations are performed, we will choose a speciic ordering for the nodes within trails, and the trails within trail L� M sets. be aLet sequence of elements from the set � , which are ord ordered according to the total order ord: L� M ≡ ⟨� , ... , � ⟩ : � ∈ � ∧ � < � ⇒ �< �∧ |� | = � (11) ord 1 � � � ord � Next, letpre(�) be the total order of the nodes in trail �, induced by the left-to-right preorder traversal �. The of preorder is the lexicographic ordering of the call stacks represented by the nodes: � < � ≡ � ... � < � ... � (12) � ,...,� pre(�) � ,...,� 1,1 1,� lex 2,1 2,� 1,1 1,� 2,1 2,� 1 2 1 2 As an example, the igure below shows the node ordering of a trail with ive nodes: ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 15 s s 1 1 � s ,s 1 3 s s s s s s s 1 2 3 4 5 2 3 ⦇ ⦈ � ⟨ ⟩ pre s ,s 1 2 � � � � � s s ,s s ,s s ,s ,s s ,s ,s 1 2 1 3 1 3 4 1 3 5 4 5 � s ,s ,s s ,s ,s 1 3 4 1 3 5 Union-grafting ∪ relies on the right-associative helper operation , which is similar to the grafting operation , the diference being that it grafts to all possible graft points instead of a�sp . In eciic otherpwoint ords, given a graftee trail � = (� , � ,� ) and a target trail � = (�, �,�), � � grafts� to all candidate graft-points�in , i.e. � � � to all graft-points that represent the same subroutine as the ro�ot . The of graft-points are ordered in preorder traversal of the trail �. The following igure shows two examples ofopthe eration. On the left, the trail � → � is grafted to both 3 6 graft points � of the target trail. On the right, the �trail ← � → � cannot be grafted to any graft points in the 3 3 2 7 target trail, because the target trail has no graft point � .with s s s s 1 1 1 1 s s s s s s s s s 2 3 2 3 s 2 3 2 3 3 2 = = s s s s s s s s s s s s s s s s s s 3 4 5 3 4 5 6 3 4 5 6 3 4 5 6 6 3 7 s s s s s s 4 4 6 4 6 4 6 The deinition of theoperation uses a helper function � to recursively graft at all candidates: � (�, �,�) ≡ g(�,(�, �,�),�) � g(�,(�, �,�), � \ � ) if� ≠ ∅∧ � = sub(����(� , � )) � last �,�  � � last �   (13) g(�,(�, �,�), �) ≡ g(�,(�, �,�), � \ � ) if� ≠ ∅∧ � ≠ sub(����(� , � )) last �,� � � (�, �,�) otherwise where L�M = ⟨� , ... , � ⟩ � = � ���(�,�,� ) � ,...,� � ,...,� last � ,...,� 1,1 1,� �, 1 �,� �, 1 �,� 1 � � Finally, to establish an ordering on sets of trails, we deine the lexor ondering trails� and � as the lexicographic 1 2 ordering of the lists obtained with a preorder traversal of the�noand des �of: 1 2 (� , � ,� ) < (� , � ,� ) ≡ L� M < L� M (14) 1 1 1 lex 2 2 2 1 pre(� ,� ,� ) lex 2 pre(� ,� ,� ) 1 1 1 2 2 2 In Equations 12 and 14, we deined lexicographic orderings to order the nodes and the trails, as this allows deining subsequent operations deterministically. Without any loss of generality, we could have picked diferent orderings, but in the formalization we adher lex efor to simplicity. Union-graft operation∪. Assume that we want to create a union of two sets of trails � and � , but to avoid having multiple trails with the same root subroutine in the result. The union-graft operation achieves this by grafting trails fr � om to trails �in wherever possible, and then creating a union with the remainder. An example of� ∪ � is shown in the following igure. s s s 9 s 9 1 s 1 5 s s 6 5 s s s s 5 s s 5 2 3 2 3 s s = s ∪ 3 2 s 3 s s s s s 6 4 1 3 2 7 s s s 1 7 s s s s 4 s s 4 5 4 1 X 4 5 1 X Y Y 0 1 ACM Trans. Program. Lang. Syst. 16 • Vukasovic and Prokopec To union-graft a trail�set into a trail�set , the set � can be separated into two sets� and � , so that trails 0 1 from� can be grafted to trails�in⊆ � , and trails from � cannot be grafted to trails�in . The union-graft 0 0 1 operation grafts each trail � ∈ � to the graft sites within trails � ∈ � in the lexicographic order of the�trails . � 0 � 0 � The result of the grafting is uniied with the remainders � = � \ � and � (below∪ , is disjoint union): 1 0 1 � ∪ � ∪ {� ... � � }∪ � ∪ (� \{� }) if � ≠ ∅ 1 1 1 � 1 0 0 1 0 � ∪ � ≡ � ∪ � if � = ∅ 1 1 0 (15) · · where � = � ∪ � � = � ∪ � L� M = ⟨� , ... , � ⟩ L� M = ⟨� , ... , � ⟩ 0 1 0 1 0 lex 1 � 0 lex 1 � � = {� ∈ � : ∃� ∈ �, � � ≠ �} � = {� ∈ � : ∃� ∈ �, � � ≠ �} 0 0 The preceding deinition says the following: for all � ∈the � that trails can be grafted to at least one trail � ∈ � , graft them to all trails � ∈ � to which they can be grafted. Leave the remaining trails � ∈ � unchanged, and produce a union of all these trails. Self-root-graft operation . Self-root-graft operation takes a single trail � as ansetinput, and grafts one of ∇���� its trails � to the roots of other trails fr�om . In Equation 16, it is deined as following: if there is a candidate trail � in� that can be grafted to a root of another trail, then it is grafted to the roots of any such trail from � . Otherwise, the result is the original �trail . The self-r set oot-graft operation is illustrated in the following example, in which trail � ← � → � is grafted onto the roots of two other trails, but not onto any other graft 2 1 3 points with the subroutine � . {� � : � ∈ �(� ,�)}∪ (� \ �(� ,�)) ⟨� , ... , � ⟩ = L{� ∈ � : �(�,�) ≠ ∅}M   0 0 0 0 � lex root(�) ∇ � ≡ ���� (16) � ��ℎ������ where �((� , � ,� ),�) = {(�, �,�) ∈ � : � ≠ (� , � ,� ) ∧ ����(�, �) = ����(� , � )} � � � � � � � � 0 s s s s 1 s s s 1 3 1 3 1 1 inf s s s s s s s s s s s s s s s s 2 3 5 7 1 5 2 3 7 1 2 3 4 5 4 5 The ix-point(fix∇ )(�) represents the limit of the repetitive application of the self-root-grafting operation ���� for the trail �set . Below, notation◦ represents � applications of a function lim( is a�-deinition of the limit �∞ on a metric�(�, � ) that is 0 if and only � =if � , and is a positive constant otherwise): (fix )(�) = lim(◦ )(�) (17) ∇���� ∇���� �∞ Consider the previous example with the self-root-graft operation. If we apply it one more time � →, the trail {� , � , � }, will be grafted onto the root of the remaining trail with the same root�subr (� outine → {� , � , � , � }), 5 2 3 1 1 7 1 2 3 but subsequent applications of have no efect. In that example, the limit exists � =and 2. We now show ���� that the limit always exists. Lemma 3.1. The ixpoint(fix )(�) exists for all � , and is reached in a inite number of steps. ���� Proof. Consider the grafting operation : by Equation 9, given two input trails, the result of the operation � ,...,�� is a single trail. By examining the irst case in Equation 16, we note that the resulting set is always smaller for this case, because we picked the trail � in a way that there is a set od trails �, which share the same root subroutine as � , which allows the grafting. Thus, the cardinalities of the trail sets in(◦ the sequence )(�) are strictly 0 ���� monotonically decreasing. Consequently, the second case must be eventually applied (because the trail-set size ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 17 �+1 � cannot be less than 1), so there is an � for which(◦ )(�) = (◦ )(�), which implies that the limit ∇ ∇ ���� ���� exists, and that the ixpoint is equal (◦ to )(�). □ ���� Lemma 3.2. Each trail(�, �,�) in(fix )(�) has a unique root subroutine. ∇���� Proof. By Equation 16, the ixpoint cannot be reached if there are remaining candidates � for grafting. As long as two trails(◦in )(�) share the root subroutine, the irst case applies, and there is a candidate � ∇���� 0 � �+1 � such that �(� ,(◦ )(�)) ≠ ∅, so (◦ )(�) ≠ (◦ )(�). □ ∇ ∇ ∇ 0 ���� ���� ���� Algorithm.Having deined the necessary machinery, we Algorithm 2:DetectHot Procedure can now formally and concisely describe the hot-code de- input :program call graph � , proileΠ tection algorithm that was outlined in the earlier example. output :hot roots � , trail set � The DetectHot procedure, shown in Algorithm 2, irst 1 � = InitialTrails(Π); picks a set of hot contexts from the proile Π, and con- 2 � = (fix∇ )(� ); ���� 0 verts them to a trail set � in line 1. The concrete steps for 3 � = ∅; this are abstracted in the procedurInitialTrails e . Since 4 while¬ DetectionDone(� , �) do the trails �incorrespond directly to proiles, it is usu- 5 � = TopTrail(� \ �); ally possible to graft some of them together, as seen in the 6 Γ = CallingContexts(�, Π, � ); previous example. This initial grafting repetitively picks 7 � = { �⊙ � : �∈ Γ, Accept(�⊙ �) }; �,Γ some trail from � , and grafts it onto the remaining trails 8 if� = ∅ then � = {�} ∪ � ; �,Γ (the self-root-grafting operation ). The initial-grafting ���� 9 else is represented with the operation fix in line 2, and ���� 10 � = � \{�}; it produces the trail�set . The algorithm then creates an 11 � = � ∪ � ; �,Γ empty trail set �, and proceeds as follows. As long as a 12 end termination condition DetectionDone is not met, the al- 13 end gorithm selects a trail � according to some policy TopTrail 14 � = { ���(����(�)) : � ∈ � }; in line 5, and calls a proce CallingContexts dure to iden- tify the setΓ of calling contexts that�call ��(����(�)) in line 6. The trail � is expanded along each of the calling conte � ∈ xts Γ to a new context � ⊙ �. The algorithm only keeps the expanded trails �⊙ � that pass the Accept predicate, thus forming the set of expanded trails � �,Γ (line 7). If the trail � set is empty, then this means that � could not be expanded further, so � is union-grafted �,Γ into the set of inal trails � in line 8, which prevents its further consideration. Otherwise, the � trail must bset e �,Γ union-grafted back into the trail � . T set o ensure that each trail � ∈ � refers to a unique metho�d��(����(�)), the algorithm must graft the trails whenever possible. The merging � andof � is thus represented with the �,Γ union-graft operation ∪. The set � of hot subroutines is derived fr � om in line 14. Symbol Name Meaning (Eq. 11) L� M Ordering of the set � Sequence of elements from set � , ordered by the total order���. ord (Eq. 13) � � Graft-to-all operation Operation that grafts the trail � to all candidate graft points �. in Grafts a subset� ⊆ � of trails fr�omto � wherever possible, (Eq. 15) � ∪ � Union-graft operation and then returns a union with the remaining trails � \ � . Picks a trail � from the trail �set , and grafts it to other trails (Eq. 16) ∇ � Self-root-graft operation ���� from� that have the same root subroutine. (Eq. 17) (fix )(�) Fixpoint of The limit of the repetitive application of the self-root-graft. ∇���� ∇���� Table 2. Summary of Key Symbols from Section 3.3 ACM Trans. Program. Lang. Syst. 18 • Vukasovic and Prokopec 3.4 Hot-Code-Detection Policies The code in Algorithm 2 includes several procedures that drive the behavior of hot-codeInitialTrails detection: , DetectionDone, TopTrail, CallingContexts, and Accept. A speciic combination of implementations of these procedures is callehot-co d a de-detection policy . Diferent policies result in diferent instantiations of the algorithm, and we show our choice next. In this section we explain the policy components, and we present the speciics of the key procedures in Appendix D.1 in order to facilitate the algorithm implementation. InitialTrails creates a set of initial trails from the Π.pr Woile e use a constant � to set the lower bound for the proile’s contribution to the total hotness of a program. The constant � is tuned on a set of benchmarks to achieve the best performance, as explained in Section 5.6.DetectionDone Next, is true once all trails�fr arom e inalized. This is ensured by our choice Accept of . CallingContexts procedure. The root of every trail represents the root subroutine of a compilation unit, which can be extended along a particular calling context. The set of all possible calling contexts can be determined by examining all the proile entries in the Π.pr Woiles e identify the subset Π| of proile entriesΠin that refer to callsite executions speciically. For a spe�ciic , the set trail callerProilesis determined as those entries from Π| that end with a subroutine � , which calls the subroutine root(�) in the call-graph � . � � The total amount of time spent in the code represented by the �trail is the sum of the time spent when that trail � is invoked from each of its calling contexts. When extending �, w the e w trail ould like to retain the extensions �⊙ � across those calling conte�xts such that a signiicant portion of the time is sp � when ent incalled from �. Note that the information about the amount of time spent in a trail when called from a particular calling context is not included in the prΠoile ś the proile only includes the execution counts individual of points in the pr.ogram Therefore, we need to somehow estimate the portion of the trail �’s hotness that belongs to a particular extension �⊙ �. For this reason, theCallingContext procedure additionally computes attenuation an factor � (�) ∈ [0, 1] of each context � = ⟨� , ... , � ⟩, which is an estimate of the portion �’s hotness of that is the result of being called 1 � from the calling conte �. The xt attenuation factor is calculated as a ratio of the hotness of one calling context � that calls root(�) and the hotness sum of all such contexts. Importantly, this is just an estimate based on the partially context-sensitive proiles. The hotnessℎ counts in the numerator andℎ in the denominator denote onlyhow many times the trail was calle , and d serve as a proxy forthe amount of time spent in those calls . Consider the following example. � (� ) = 1 �(� ) = � (� )·(�(� )+ �(� )) s s s ,s s 0 0 0 1 s 0 s s s 0 0 5 7 s s s 1 6 8 h h h �(� ) = � (� )·(�(� )+�(� )) 1 2 3 s ,s s ,s s ,s s ,s ,s 0 1 0 1 0 1 0 1 2 �(� ) = h � (� )=1 s ,s 1 s s 0 1 s 0 2 s 1 h 3 4 � (� ) = s s s ,s ,s 3 4 0 1 2 h +h +h 1 2 3 In the preceding igure, the trail � ← � → � (on the left) has the calling conte � xts → � , � → � and 3 2 4 0 1 5 6 � → � , with hotnessℎ , ℎ and ℎ , respectively. The attenuation factors of these diferent calling contexts of 7 8 1 2 3 the subroutine� are computed as the ratio of a calling-context hotness and the sum of the hotness of all three calling contexts. Hotness of a trail is computed by summing up the hotness of its breadcrumbs, and weighting them using the attentuation factors. Trail hotness.Hotter trails should generally have a greater likelihood of being considered for expansion, and should get expanded across more calling contexts.trail The hotnessis a function � : �(�) → R that maps a trail to a non-negative real value. It is deined as the recursive hotness sum of all the breadcrumbs in �, wher the etrail each subtree is weighted with the graft-point attenuation � Next, we explain the auxiliary functions � and �. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 19 Graft-point attenuation of a trail � is a function � : � → [0, 1] that maps each node to a real value between 0 and 1. The purpose of� is to partially decrease the hotness of some parts of the trail when it gets extended along a calling context. For the initially created trails, the attenuation factor is set to 1 to all the graft-point nodes. After the grafting operation � � is performed, the attenuation factor of the resulting trail graft points is inherited from the input trails. In another words, the attenuation factor of the root�of trail, the which is being grafted is set to the value of the graft point of the corresponding node of the target �. All trail the other attenuation factors in trail � are inherited from the input � trail. When a trail � is expanded using a calling conte �, thext algorithm computes the attenuation factor � (�) for that particular extension in CallingContext the procedure, as previously described. This is the attenuation factor for the � trail, root of while the attenuation factor for the root of the expanded trail is set to 1. Breadcrumb hotness of a trail � = (�, �,�) is a function � : � → N , which maps each node to its estimated � 0 count. Initally, all the nodes corresponding to the end of a calling context have the hotness ℎ fromset thetoproile entry the trail is constructed from. When expanding � trail with a calling �conte , nodes xt that originate from � inherit the original hotness, and all the nodes corresponding � have their to hotness set to 0. When grafting is performed, the hotness of the grafted nodes is added together where possible, and inherited otherwise. TopTrail predicate.To decide which trails are most promising, the algorithm relies on the hotness of the individual proiles. The trail� hotness induces a total order hotter on the set of all trails T, where the tie-breaker is the lexicographic order � and of � (see Equation 14): 1 2 � < � ≡ �(� ) > �(� ) ∨ (�(� ) = �(� ) ∧ � < � ) (18) 1 hotter 2 1 2 1 2 1 lex 2 The TopTrail procedure then simply takes the irst trail�fraccor om ding to thehot order. The Accept predicate.While our policy always works on the hottest trail, it is preferable to eventually process trails that are less hot, but smaller. For this reason, Accept the predicate must prevent further expansion of the hottest trail once the trail grows too large. To assess how large the trail is, we deine � that a metric sums the code sizes of all the subroutines in the trail. It is useful to restrict the amount of recursion in the trail. To achieve this, we deine�the thatfunction recursionDepth computes the sum of 2 of all the nodes in the trail, multiplied by a small, experimentally determined constant � . ��� Let the relative hotness be the hotness of the trail �(�) divided by the approximation of the total time spent in the program (i.e. the sum of all the hotness counts from the pr Π).oile The extended trail is accepted if its relative hotness decremented by the recursion penalty �(�), is larger than the threshold function that depends on the size of the trail �. 3.5 Inliner Modifications After the hot-code detection from Algorithm 2 produces the trail � that setcorresponds to hot compilation units, the compiler’s inlining algorithm, which creates the individual compilation units, can exploit the information in the trail�set . Some inlining algorithms maintain call-tree data a structure [33, 97, 114] (sometimes called inlining plan and inlining ),trewhile e others work directly on the call39 graph , 96, 104 [ , 109]. The decisions about expanding the compilation unit across the call graph or the call-tree data structure are often driven by cost-beneit analyses [33, 39, 45, 53, 62, 104]. While we speculate that the cost-beneit analysis of most inliners can be improved by using the hotness information in the trails, in this section we demonstrate how we augmented a concrete inlining algorithm that is used in the Graal compiler 97]. This [ inliner maintains inlining the tr data ee structure, which isinite a tree nested within some call�tr, ease deined by Equation 4. �(�) ≡ {(�, �) : |� | < ℵ ∧ � ⊆ � × � ∧∃� ∈ ℂ(�),(�, �) ⋖ �} (19) ACM Trans. Program. Lang. Syst. 20 • Vukasovic and Prokopec Symbol Name Meaning Set of proile entries. Proile entry is(a�,pair ℎ) of a Π Proile calling conte �xt= ℓ , ... , ℓ and its execution count ℎ. 1 � Π| Callsite proiles Subset of entries in Π that represent callsite executions. � Hotness threshold Value above which a hotness entry is considered hot. InitialTrails(Π) Initial-trails heuristic Creates an initial set of trails Π. for a proile DetectionDone(T, F) Termination heuristic Determines if the hot-code detection must terminate. Returns a set of proile entries frΠom| that invoke the callerProiles(�,Π,� ) Caller-proile set root subroutine of the trail � in the call graph � . Returns the calling contextscallerPr in oiles(�,Π,� ) (i.e. CallingContexts(�,Π,� ) Calling-context set the same proile entries, but without hotness). Estimated hotness percentage of a trail � when the trail � (�) Attenuation factor ℓ ,...,ℓ 1 � � is invoked from the calling conte ℓ , ...xt , ℓ . 1 � � (�) Graft-point attenuation Maps each trail node � to an attenuation value in [0, 1]. � (�) Breadcrumb hotness Maps each trail node � to the hotness of that node. �(�) Trail hotness Estimated hotness of the entire�.trail (Eq. 18) L� M Hotness-ordered trail set Sequence of trails fr�om , ordered by theℎ�����relation. hotter TopTrail(�) Top-trail heuristic Returns the hottest trail from the set�of . trails �(�) Trail size Code-size estimation for�the . trail �(�) Recursion penalty Recursion penalty for the�.trail Accept(�) Acceptance heuristic Decides whether to retain a�trail after expansion. Table 3. Summary of Key Symbols from Section 3.4 The inlining tree eis xpande (1) d until the inliner decides that a suiciently large part of the call tree is covered. After that, the inliner (2) decides which parts of the inlininginline tree will into d the becompilation unit. Finally, the inliner (3) optimizes the inlining tree by pruning some branches, i.e. it attempts to ind another inlining tree nested within the current one. These steps are repeated until a termination condition is satisied ś we summarize them in Algorithm 3. During the expansion phase, the inliner repetitively selects a leaf node of the inlining tree, and adds its child nodes. Algorithm 4 shows an individual inlining-tree expansion step ś starting from the root, it keeps descending to the child with the highest priority �, until inding some no � de that does not have children. If that leaf � ,...,� 1 � node does not have any callsites, then its priority � is−∞. Otherwise�, of a leaf node is deined as its beneit divided by code size, where the beneit correlates with the call frequency �.of Priority an inner node is equal to that of the child � with the largest priority �, decreased by a penalty function that depends on the size of the respective subtree. To ensure that less frequent callees that are closer to the root compilation unit are not overlooked, thepenalty term decreases the likelihood of exploring huge subtrees that have a high fr97 equency ]: [ −∞ �  � ∉ � � � �  � �+1   beneit(�) ⧸ � ∉ � ∧ �  � ∈ � � ,...,� ,� � � � � � (�, �, �) ≡ 1 � �+1 � �+1 GraalVM codeSize(�) (20) max � (� , �, �) − penalty(�) ��ℎ������ GraalVM � �� ∈�  � � where � = � � = (� , � ) � = (� , � ) � ,...,� � � � � 1 � The modiications that we describe in this section apply InlineHo to thet procedure from Algorithm 1. The InlineCold procedure corresponds to the unmodiied version of the inliner. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 21 Algorithm 4:Expand Step [97] Algorithm 3:GraalVM Inliner [97] input :program call graph � , entry-point� input :call graph(�, �), inlining�tree output :IR � of the root compilation unit output :expanded inlining�tree 1 � = ({� },∅); 1 � = ����(�, �) where � = (� , � ); � � � 2 while{� : �  � ∈ � } ≠ ∅ do 2 while¬ InliningDone(� , �) do � � � 3 � = arg max �(� ) y 3 � = Expand(� , �); �� ∈� � � 4 � = Inline(�); 4 end 5 � = Optimize(�); 5 � = �; � ,...,� 0 � 6 end 6 � = {� : �  � ∈ �}; � � ,...,� ,� � � 0 � �+1 � �+1 7 � = ����(� , � ) where � = (� , � ); 7 � = {�  � : �  � ∈ �}; � � � � � � ,...,� � ,...,� ,� � � 0 � 0 � �+1 � �+1 8 � = GetIR(� ); 8 � = � ∪ (� , � ); � � � Expansion modiications. The inliner has a limited budget for inlining-tree expansion, so inlining relies considerably on expanding the łmost beneicialž parts of the inlining tree. We therefore bias the priority function � so that the inlining-tree nodes that correspond to nodes of some trail are expanded with a higher likelihood. The rationale for this is that they are more likely to transitively invoke łhot code,ž which should be inlined into the root compilation unit. Our modiication deines a new priority � function , which multiplies the InlineHot default priority with an experimentally determine�d constant whenever the node in the inlining-tree can ����� be matched to some trail: � ∃(� , � ,� ) ∈ �, � ∈ � bonus � � � � ,...,� � � � � (� , �, �) ≡ � (� , �, �) · (21) InlineHot � ,...,� GraalVM � ,...,� 1 � 1 � 1 otherwise Due to the penalty term in the priority function � , the bonus merely biases the expansion around the GraalVM łhot codež represented by the trails, but does not completely prevent the exploration of the coldž ł callees. Budget modiications.When compiling hot compilation units, we change the parameters of the inliner to increase the code-size budget available for inlining. As described in97relate ], the dinliner work [ uses the following threshold function that can prevent expansion, depending on the total � of code thesize entire inlining tree (as deined by Equation 35): beneit(�) �(�)/� ⧸ ≥ � (22) codeSize(�) Next, the inliner uses the following threshold function to decide whether to inline a calle � e compilation unit into the root compilation unit of the call �, which tree is the caller �: of (codeSize(root(�))+codeSize(�))/� beneit(�) ⧸ ≥ � · 2 (23) codeSize(�) We experimentally tune the parameters �, � and � to increase the size of the hot compilation units and to 1 2 consequently improve performance on a set of programs, as described in Section 5.2. InlineCold modiications.The only change in the inlining for cold compilation units is that we prevent the inlining of subroutines in� the from set Algorithm 2, which were previously compiled as hot compilation units. The expansion priority of calls to subroutines � ∈ � is set to−∞: −∞ � ∈ � � ≡ (24) InlineCold � (� , �, �) ��ℎ������ GraalVM � ,...,� 1 � In addition, the Inline step from Algorithm 3 is modiied to never inline � a∈call � . to 3.6 Hot-Callee Classification ACM Trans. Program. Lang. Syst. 22 • Vukasovic and Prokopec After the compiler inlines some of the callees into a hot subroutine, there will Trails 3 generally exist some remaining callsites in the corresponding compilation unit. Some of these callees may be coldž ł and not beneicial for inlining, but s s 1 8 some of them may be łhotž callees that were not inlined due to insuicient budget. Such łhotž callees should be recursively compiled as hot compilation s s 4 7 units. TheIsHot procedure from Algorithm 1 needs to decide whether a given callee of the compilation unit should be placed onto the hot or onto Inlining tree the cold compilation queue. s s Consider the example in the adjacent igure, where an inlining tre5e is 7 shown with rectangles, and the trails are shown with circles.�The←trail � → � is matched against the root of the inlining tree, and the corresponding 3 8 nodes of the inlining tree are shaded in yellow. The non-matched (cold) parts of the inlining tree are shaded in white ś the node� is not matched to any node in the trail, but its�calle can bee matched to another trail 4 2 � ← � → � . We classify such callees as hot ś for example � do , if es not get inlined, it will be recursively 5 2 7 5 compiled as hot. The trail for the hot calle � e is determined with a combination of trail matching and trail cutting operations. � ,...,� 1 � First, we ind a matching trail � for in the trail-set � , and we then cut that trail at the subtree that corresponds � ,...,� 1 � to the call sequence � , ... , � . The trail-matching operation ↓ matches a node from the inlining tree, with a call 1 � sequence � , ... , � , ... , � , to a trail � from the trail�set , such that � contains the longest suix of that call sequence. 1 � � For the initial set of hot subroutines � from Algorithm 2, the association is straightforward, since �∈ � each corresponds to a trail � ∈ � . However, a hot call to a subroutine � may not have a corresponding trail ś for this reason, we implemented a trail-cutting operation. Given a breadcrumb � andtrail its node� , the trail-cut � ,...,� 1 � operation⊘ produces a new trail that consists only of the subtree starting � at. Deinitions and details of � ,...,� 1 � both operations are presented in Appendix D.2. The trail-matching and trail-cutting are illustrated in the following example. The longest trail-match in the set � for the calling conte⟨�xt , � , � ⟩ is the leftmost trail in the igure, because that trail contains the longest suix 5 3 1 of� , � , � . The resulting trail is then cut on the right side of the igur�e, at no , and de this yields the trail 5 3 1 � ,� ,� 3 1 2 � ← � → � . 5 2 7 s s s 3 2 3 3 s s 1 s s s s s 1 8 5 1 8 1 8 � � s ,s ,s s ,s ,s = = 5 3 1 3 1 2 s s s 2 4 s s s 2 3 2 2 s s 5 7 s s s s s s 1 7 s s 5 7 5 7 5 7 3.7 Parameter Summary In Table 5, we listed the key parameters � , � , and � , which the proposed algorithm introduces. Constant � ����� ��� is a limit that a proile’s hotness must exceed to be included in the initial set of hot proiles, compared to the overall hotness of the program. Constant � serves as a multiplier for calculating the recursion penalty of a ��� trail. The details of how we used these constants in the algorithm’s policy can be found in �Appendix D.1. ����� is a constant for multiplying a default inlining-tree-node priority for every node that can be matched to a trail, according to Equation 21. All these constants are tuned for the best performance on a set of benchmarks, and the results are presented in Section 5.6. Notably, since diferent compilers and inliners have diferent IR designs and enact diferent optimizations, their cost and beneit models difer, so we expect that the algorithm parameters need to be re-tuned for each speciic environment. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 23 Symbol Name Meaning (Eq. 19) �(�) Inlining tree Data structure maintained by the inliner for the pr�ogram . GraalVM node priority func-Function which calculates the node priority using heuristics in GraalVM (Eq. 20) tion GraalVM [97]. InlineHot node priority Function which increases an inlining-tree-node priority if it is InlineHot (Eq. 21) function marked as hot. InlineCold node priority Function which modiies an inlining-tree-node priority if it is InlineCold (Eq. 24) function marked as cold. Operation which inds a trail in the trail � containing set the � ↓ � Trail-matching operation � ,...,� ,...,� 1 � � longest suix of the call sequence � . � ,...,� ,...,� 1 � � Operation which produces a new trail that contains only a sub- �⊘ � Trail-cut operation � ,...,� 1 � tree of the� trail starting from the no � de . � ,...,� 1 � Table 4. Summary of Key Symbols from Sections 3.5 and 3.6 Symbol Name Meaning � Hotness threshold Value above which a hotness entry is considered hot. � Recursion constant Constant used for restricting the amount of recursion in a trail. ��� (Eq. 21) � Expansion bonus Bonus for expanding an inlining-tree node matched to a trail. ����� Table 5. Summary of the Key Introduced Parameters Symbol Name Meaning Parameter that impacts the amount of call-tree expansion, which (Eq. 22) � Expansion inertia base the inliner performs. Relative beneit coeicient Parameter driving the beneit threshold for deciding whether a (Eq. 23) method should be inlined. Parameter limiting the budget that the inliner has available for (Eq. 23) � Base target spending inlining. Table 6. Summary of the Existing Inliner Parameters in GraalVM This section also contains the key parameters already included in the inliner, and they are listed in Table 6. We tuned them to show that our algorithm does not show better performance only for a subset of the parameter values. As a result of the experiments, we chose the values which give us good performance, but we also demonstrate that our algorithm works well for the other parameter values. These results are presented in Section 5.2. 4 IMPLEMENTATION The algorithm presented in Section 3 was described on an abstract level, and it can be implemented in most concrete compilers. To evaluate the algorithm, we implemented it inside the ahead-of-time Graal compiler for the GraalVM Native Image 120 [ ], and applied it to concrete programs and benchmarks. More precisely, we modiied the compile queue within the existing compiler, added a phase to analyze the input proiles, and used it to improve the decisions of the existing inliner. We start with an overview of the existing compiler inside GraalVM and the existing proile-guided optimization support in GraalVM’s ahead-of-time compilation mode in Sections 4.1 and 4.2. Then, in Sections 4.3 and 4.4, we discuss the data structures and the details of our implementation. If the reader wishes to see an example execution of the proposed algorithm, Appendix A illustrates compilation of a metho mnemonics d from benchmark. ACM Trans. Program. Lang. Syst. 24 • Vukasovic and Prokopec 4.1 System Overview Ahead-of-time (AOT) compilation is a set of techniques for compiling and optimizing the entire program before the execution of the program begins. GraalVM Native Image 120] is [ an ahead-of-time compiler in GraalVM, in which we implemented the algorithm that is the subject of this paper. GraalVM Native Image compiles the input program to a platform-speciic executable, called native image (NI). The input to the Native Image is the set of class-iles that contain the Java byteco1de ] that [ represents the program, and the name of the method that is the program entry point. Just-in-time compilation (JIT) is a substantially diferent compi- lation paradigm, in which the compilation is performed during the 1 11 12 start P(0) C(null) execution of the program, and is done only selectively on a subset of methods. The execution of the program usually starts in the irst stage == C(EMPTY) 2 of the compiler, e.g. an interpreter. After the method gets invoked a if certain number of times, or after the total amount of the time spent in the method exceed a speciic threshold, that method is placed on new the compilation queue and eventually compiled. HotSp 95] isotone [ load invoke of the virtual machines that uses the JIT compilation approach. In the GraalVM ecosystem, both Native Image and HotSpot use merge Graal as the optimizing compiler. After the Graal compiler loads the phi bytecodes of the program, parses them, and creates the corresponding return intermediate representation (IR) 67],[it applies numerous optimization phases to the program IR. Graal is, in principle, an intraprocedural Fig. 4. Example Graal IR for theOptional. optimizing compiler ś every method of the program is parsed as a ofNullable method separate compilation unit, and all subsequent optimization phases are separately applied to each compilation unit. However, a single compilation unit may comprise several methods, because the compiler can decide to inline some of the callees. Graal IR. The intermediate representation in the Graal compiler is a directed graph data structure that simulta- neously models the control-low and datalow dependencies between individual execution 67], similar steps [ to the sea-of-nodes representation58[]. The preceding igure shows the corresponding Graal IR for the JDK 8 Optional.ofNullable method [18]. The method is deined as follows: <T> Optional <T> ofNullable (T x) { return x == null ? EMPTY : new Optional <>(x); } Inlining and node source positions. The Graal compiler transforms the aforementioned IR in a sequence of transformation phases, one of which performs inlining 97]. In the[ previousofNullable example, theinvoke node represented the constructor call, which merely assigns the parameter to one of the ields Optional of the object. Typical heuristics inline this constructor due to its96 small ], and the size resulting [ state of the IR is shown in the following igure. The invoke node that represents the Optional constructor call was replaced with the body of the constructor, which is in this case a single store node. We use this example to explain the conceptno of deasource position in Graal. The Java bytecode of each method is a linear list of instructions 75], each of[ which has a unique bytecode index (BCI) , which is the ofset of the instruction in bytes. For a particular method, BCIs start from zero and go up to the BCI of the last instruction. Every node in the IR is associated with the bytecode instruction that it was created from. Therefore, every node has a method-BCI pair that denotes where it came from. However, nodes can originate from callees that were inlined into the compilation unit, and for this reason, Graal assigns a listof method-BCI pairs to each node, which represents where the node was inlined from. This list is called the node source position . In the preceding example, the node source position of new the node isofNullable:7, because this particular node was not inlined (i.e., it comes from the root method of the compilation unit). The ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 25 node source position of the store node isofNullable:9,<init>:0, since that node was inlined from the call at ofNullable:9, and is the irst instruction in the constructor <init> of theOptional class. The calling context is the node source position ofinvoke the from which a particular node is inlined. store For the node in 11 12 start P(0) C(null) the exampleofNullable:9 , is its calling context. The term calling C(EMPTY) context is overloaded, because it also denotes the call stack that == exists during the program execution and which invokes the com- if pilation unit that corresponds to the top frame of the call stack ś ofNullable:7 to disambiguate, we say call stack when we mean the latter. new The build process in Native ImageImage-building . consists load store of several main steps: (1) points-to-analysis, which includes class ofNullable:9 initialization and heap snapshotting, (2) compilation, and (3) im- 6 <init>:0 merge age-heap writing 120 [ ]. The points-to analysis step determines the phi set of reachable classes and methods 113[], which is callehoste d thed return universe . The points-to analysis also initializes the static ields of some classes. The compilation step then, starting from the entry points, recursively compiles the methods from the hosted universe one-by-one, in a manner that corresponds precisely to lines 13-20 in Algorithm 1. Finally, the image-writing step creates a binary with the compiled code and the initial state of the heap (which comprises the objects that are transitively reachable from the static ields of the initialized classes). Extensions in this work: the compilation is separated into two rounds, the irst compiling hot methods, and the second compiling cold methods. 4.2 Overview of Profile-Guided Optimizations (PGO) in Native Image On HotSpot, the program is proiled while it is inter- preted, and before it is JIT-compile 15, d50[, 80, 122]. Points-To Image-Heap Compilation Since method inlining (which by deinition introduces Analysis Writing calling-context sensitivity into the compilation unit) is only performed during JIT compilation, the proiles col- lected by the interpreter are not context-sensitive ś the interpreter maintains the same set of proile counters for a particular method, regardless of who the caller is. In AOT compilation, however, the entire program is compiled before the program starts executing, and there is typically no interpreter available. For this reason, GraalVM Native Image supports two modes of compilation instrumentation ś image , in which the binary is instrumented with the code that collects the proiles, and optimization the image , in which the binary does not have any proiling code. The program is irst compiled into the instrumentation image, which is executed once to collect the proile information. The proile information is dumped to a ile when the instrumentation-image program exits. Then, the program is compiled into the optimization image, which optionally takes the ile with the proile information. This proile information is then used to guide the decisions in various compiler optimizations. Types of proiled events. Speciic instructions of interest in the proiled program earveents calle . To minimize d the performance overhead of proiling, most VMs track only those events that are considered useful in improving the efectiveness of compiler optimizations. GraalVM Native image collects proile information for three diferent types of events: • Method entries.Records the number of times that a metho�d is entered. The method� may be inlined into a calling conte � , xt in which case this event type represents method’s hotness within the calling context � . ACM Trans. Program. Lang. Syst. 26 • Vukasovic and Prokopec • Conditional branches.Records the number of times that each branch of a conditional if (or ana switch statement) was executed. Each branch of the conditional is associated with a bytecode index (BCI) within the method � , which may be inlined into a calling � . context • Virtual dispatches.Keeps an array of counters, each for one potential receiver type at the virtual callsite, and records the number of times that each concrete receiver type was invoked. The callsite is associated with a BCI in � , which may be inlined into a calling � . context Extensions in this work: the virtual-dispatch proile for each callsite in hot code is restricted to the callees that appear on the breadcrumb trail, instead of being taken directly from the input proile. Obtaining proiles.In Native Image, the proiling is based on instrumentation ś the IR of each compilation unit is modiied to include nodes that collect counts for the previously enumerated events. Each node that is inserted into the IR represents a sequence of instructions that updates the counter for the event associated with the corresponding node source position. Each node source position of a proiling node is mapped to a unique identiier, which is used as an index in a counter array. Since the node source position includes the calling context within the current compilation unit, the count associated with every event is context sensitive. Extensions in this work: partially context-sensitive proiles are efectively made longer using the proposed breadcrumb trails approximation. The Native Image developers decided not to use atomic counters in Native Image PGO. The rationale behind this decision was twofold: irst, the extensive measurements revealed that the errors introduced by non-atomic counters are small, while the overhead of atomic counters is considerable compared to non-atomic ones; and second, optimization decisions that are made based on counter values are in most cases heuristics, and thus approximate. Furthermore, non-atomic counters in Native Image may lose some updates, but cannot lose all of them ś every calling context that was executed in the instrumentation image always has a non-zero proile count. The associated calling contexts contain all the methods from the program traces. Finally, our goal was to compare our proposed technique against the existing PGO in Native Image without changing the instrumentation mechanism, so modifying the existing counter infrastructure was out of scope. The adjacent example shows the IR after the insertion of two prof-cond nodes (one for each branch followingifthe node 2), 11 12 start P(0) C(null) which represent increments of the counters 1468 and 1469, respec- 10 tively. In the later compilation phases, these nodes are replaced == with low-level memory loads and stores that increment the respec- if C(1469) C(1468) tive counter. The proiling nodes for event types such as virtual 14 15 dispatches also count the corresponding receiver types, and are prof-cond prof-cond lowered to code that maps the receiver type to its entry. Once the C(EMPTY) new instrumentation image of the program completes execution, the load values of these counters are dumped to the disk into a ile, which store is consumed by the optimization image. The proile format corresponds to the formal input of the algo- merge rithm, as described in Section 3. Each counter is associated with phi the node source position of the corresponding instrumented node. return The irst location in the node source position always corresponds to the root method of the compilation unit, and the last location is the method-BCI pair of the instruction that the instrumented node was parsed from. One of the main reasons that the Native Image implementers decided to use only partially context-sensitive proiles is that the collection has a relatively low performance overhead, and that the memory consumption of the counters is low. While this instrumentation contains the exact number of times that an event was executed in ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 27 a given partial calling context, its downside is that the partially contextual proiles can be polluted in compilation units that have many callers, because the proile counts are aggregated across all callers. This, in turn, leads to incorrect inlining decisions. The length of partial calling contexts can be increased by doing more inlining in the instrumentation image, but this "works" only to a certain degree, as we show in Section 5.5. Applying proiles.Native Image already relied on proile-guided optimizations (PGO) prior to our work, in the following manner. The nodes in the Graal IR are augmented with additional information, such as the probability that a particular branch is taken at a particular if node, or the probability of a particular receiver type appears at a particular invoke node. This information is calculated from the counts in the proiles, and (when present) is used to guide existing Graal optimizations with knowledge about the program’s execution. For example, branch probabilities are used to compute basic block frequencies that guide path duplication 88] and loop [ transformations, and receiver type probabilities are used in callsite devirtualization 78, 97]. In this section, [ we explain how the partially context-sensitive proiles are applied to the IR in Native Image. The bytecode-parsing phase, which constructs the IR of each method in the native-image program, is the irst phase in which the proiles are applied. During bytecode parsing, the proiles are applie context-insensitiv d in a e manner, because the IR of a particular method is parsed, and no inlining occurred so far. Inlining, a later phase in the pipeline, applies the proiles in a context-sensitive manner, with the purpose of helping the inliner make better decisions. The two main steps of the inlining phase in GraalVM, as explained in Section 3.5, are expansion and inlining. Native Image applies conte the xt-sensitive proiles during the expansion step of the inliner ś in each of the callee methods, the branch probabilities of if all nodes and the receiver-type probabilitiesinvoke of all nodes are computed using only those proile entries that match the calling context of the respective callee in the inlining tree, as explained next. Proile-application exampleConsider . the adjacent igure, where the proiles from the instrumentation run were applied to the com- 11 12 pilation unit ofNullable of the optimization image. The purple start P(0) C(null) node 13 denotes the probability of taking true thebranch at the true prob=99% == if node 2, which can be utilized by various optimizations. For if example, the inlining phase can now conclude that it is very un- C(EMPTY) likely that the constructor callinvoke at the node 5 in thefalse new branch will be called, so there is very little beneit from inlining it. load On the other hand, subsequent code-motion phases can decide to 5 invoke move the highly frequent load node 3 to the position before the if node 2, since speculative prefetching can result in a performance 6 merge phi improvement [65, 100]. Querying proiles.The optimization-image compilation needs to return map node source positions to execution counts. When the calling contexts within each compilation unit of the instrumentation image exactly correspond to the calling contexts of the optimization image, this mapping is trivial. However, the calling contexts generally difer between the instrumentation and the optimization image, due to diferent inlining decisions ś the reason for this is that the inlining decisions are driven by the proiling information. In Native Image, when querying the execution counts for the (shorter) node source position ℓ , . . . , ℓ , the rule 1 � is to add together the counts associated with all (longer or equal) node source positions ℓ , . . . , ℓ , . . . , ℓ (where 1 � � � may be equal to�, i.e. there is an exact match). The rationale for this is that all longer or equal calling contexts from the instrumentation image may correspond to the queried calling context. On the other hand, when a node source position ℓ , . . . , ℓ does not have an equal or longer match in the set of proiles, in Native Image, the rule is 1 � to add together all the proiles with shorter calling contexts. ACM Trans. Program. Lang. Syst. 28 • Vukasovic and Prokopec Notably, these two rules were chosen as approximations by the Native Image developers. Generally, global analyses of the call graph and the proile set can result in better approximation schemes, but that is outside of the scope of this work ś here, we outline how the existing proiling system works, and do not change the default proile-querying schemes when implementing our algorithm. Implementation inputs.The input to our implementation is the hosted universe that is produced by the points- to analysis step of the Native Image build (as explained in Section 4.1), represente HostedUniverse d with the class in Native Image; the set of entry-point methods of the program, each represented by HostedMethod the class; and the set of pairs consisting of a node-source-position and an integer (i.e. the PGO proile). This input closely corresponds to the input of Algorithm 1 from Section 3 ś notably, the hosted universe contains the call graph deined in Section 3.1, along with the set of reachable classes and their ields. 4.3 Data Structures for the Code Analysis The previous two sections gave an overview of GraalVM, Native Image and the existing proile-guided op- timizations within Native Image. In the rest of the sections, we focus on our contribution, and present our implementation of the new techniques proposed in the paper. In this section, we present the implementation of the main data structures that we use for the code analysis. To explain the implementation, written in the Java programming language, we deine the main ields of each of the data structures, and we show their most important methods. Data type Breadcrumb. Listing 3 shows the implementation of a breadcrumb, i.e. a node in an annotated breadcrumb trail class Breadcrumb { as deined by Equation 7. The node corresponds to a single HostedMethod method ; Map < Integer , Breadcrumb []> callsites ; subroutine in the program (stored in the ield method). It Breadcrumb parent ; contains a reference to a parent node (ield parent), which GraftPoint graftPoint ; represents the caller of the node’s subroutine in a given class GraftPoint { trail. The callsites map matches a bytecode index of each double attenuation ; callsite in the node’s method to the list of the nodes corre- sponding to the methods that can be invoked at the callsite. Listing 3. Breadcrumb Data Type The rationale for having the list is that each bytecode index may represent a virtual call, which can dispatch to more than one method. Each breadcrumb has a non-null GraftPoint object if that breadcrumb represents a point for a grafting operation, as explained in SectionGraftPoint 3.2. The object contains theattenuation ield, which models thegraft-point attenuation function of the associated trail, as formally explained in the deinition in the Appendix D.1. Data type Trail. In Listing 4, we present the concrete implementation of a breadcrumb-trail data type, which was formally deined by Equation 7 for annotated trails, in Section 3.2. A trail is a tree that consists of breadcrumb nodes. The root breadcrumbroot (ield ) corresponds to the method of the corresponding compilation unit. Every other breadcrumb has exactly one parent, and the arbitrary number of children (Listing 3). A trail contains agrafts mapping from methods to all the breadcrumbs in the trail that correspond to the respective method and that haveGraftPoint objects. This map is used to optimize the trail-grafting operation deined by Equation 9. Finally, to model various trail-related functions deined in Section 3, a Metrics object is associated with each trail. This object containshotness the totalield, which represents the hotness function �(�) from Equation 34; the size ield, which represents the �(�) size function from Equation 35; and the recursion ield, which maps each method to its greatest recursive depth in the respective trail, and which is used to implement the penalty �(�) from Equation 36. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 29 Listing 4 also contains methods that implement the three main operations deined on trails. These operations are already formally deined in the Section 3.2. Metho createInitial d conceptually corresponds to the operation (∅,∅,∅) ⊙ ⟨ℓ , . . . , ℓ ⟩ of extending an empty trail with a calling context, as deined by Equation 8. It takes a 1 � Profile object (consisting of a calling-context and the corresponding value count ), as an input; its output is a new trail object, in which each breadcrumb coincides with a location from the input calling-context. The proile count is used for the initial hotness metrics of the created trail. Trail size and recursion depth are computed from the context input. The root of the resulting trail is a new graft point attenuation with the 1.0. Method expand performs the expansion op- eration onthis trail object, and implements class Trail { the ⊙ operation from Equation 8. The profile Breadcrumb root ; Map < HostedMethod , Breadcrumb []> grafts ; argument of the method contains the context Metrics metrics ; for expansion, and the proile count of that con- text. For each location in the context we create a static Trail createInitial ( Profile profile ); Trail expand ( Profile profile ); new breadcrumb, and update grafts similarly Trail graft ( Trail graftee ); to the construction of a new trail. The graft method implements the grafting class Metrics { long hotness ; operation from Equation 9 ś it grafts the input int size ; trail graftee ( ) onto this trail. The grafting can Map < HostedMethod , Integer > recursion ; only occur on those graft-point breadcrumbs class Profile { from the target trail this whose method corre- Location [] context ; sponds to the root method of thegraftee trail long value ; ś the grafts map allows eiciently retrieving class Location { this subset. For this reason, the grafting of the HostedMethod method ; same graftee can occur more than once within int bci; a single trail. For each graft point, graftee the trail is copied and attached to the respective Listing 4. Trail Data Type graft point. The metrics of the resulting trail are updated with the metrics of the grafted trail. The total hotness of the grafted trail is complemented with the hotness graftee of themultiplied with the attenuation of the graft point where the grafting happened, as per Equation 34. The remaining two metrics, size and recursion, are updated in a similar manner that ensures the Equations 35 and 36 are satisied. The TrailSet data structure. During the execution of the algorithm in Listing DetectionDone 2, the call in line 4, the TopTrail call in line 5, the addition of the curr � ent to the trail inalized set � in line 8, removal of the current trail � from the set� in line 10, and the union-graft operation in line 11 are executed multiple times. Using a naive set encoding, each of these operations would � (take �) computational steps, wher�eis the total number of trails in the set. To reduce their computational overhead, the implementation TrailSet uses the data structure shown in Listing 5. The TrailSet contains a priority queue, a hash-set offinalized trails, andcandidates a hash-map that maps each method to a set of trails that contain that method in at least one graft-point. The non-inalized trails are in the queue, and inalized trails are in finalized the hash-set, so in the notation of Listing � ≡2,queue∪ finalized and � ≡ finalized. The TrailSet data structure includes several methods. The isFinalized method checks if the queue is empty, which efectively executes DetectionDone the policy from Equation 31 � (in 1) time. ThepopHottest method uses the queue to extract the hottest trail �in(log�) time, and is used to implementTopTrail the policy (the ordering is determined by hotness the metric of the trails, as per Equation 34).candidates The allows inding all candidate graft points in all � (�trails ) time,in where� is the size of the resulting set, so the overall ACM Trans. Program. Lang. Syst. 30 • Vukasovic and Prokopec computational time of union-grafting ∪ (as deined by Equation 15) only depends on the size of the resulting trails. The finalized hash-set is used to extract the inal set of trails � fr (set om Listing 2). 4.4 Implementation Details The preceding sections showed how the imple- mentation of the algorithm in Native Image cor- class TrailSet { responds to the formalization from Section 3, PriorityQueue <Trail > queue ; HashSet <Trail > finalized ; but left out details such as how the hotness of HashMap < HostedMethod , Set <Trail >> candidates ; a calling context is computed, and how the set of calling contexts is determined (i.e Call- . the boolean isFinalized (); Trail popHottest (); ingContexts policy). We now show how our int unionGraft ( Trail graftee ); implementation computes the hotness of virtual void graftToRoots ( Trail trail ); and direct callsites, and how it estimates the hot- ness value of the individual breadcrumbs. Finally, Listing 5. TrailSet Data Type we show how to determine the calling contexts and the attenuation values of each method. Determining the hotness of virtual callsites. For each calling context ending with a virtual call, Native Image PGO data maps every concrete method to the invocation count of that method: �(ℓ . . . ℓ ) = {(�, �) : �∈ implementations (target(ℓ ))} (25) 1 � � Above, the target(ℓ ) is the base method for the dispatch at the virtual callsite ℓ , and implementations is a function � � that returns the set of methods that implement the base method. This proile entry has two interpretations, depending on when it is used. When creating a set of initial trails, a breadcrumb that gets created from a virtual call has its hotness increased by the sum of the invocation counts of all the possible concrete methods (because all of them contribute to the hotness of the trail): ℎ = � (26) ℓ ,...,ℓ 1 � (�,�)∈�(ℓ ...ℓ ) 1 � When extending a breadcrumb trail rooted at a subroutine � with a calling context that ends with a virtual call, the invocation count that contributes to the hotness is the count for the metho �: d ℎ = � such that (�, �) ∈ �(ℓ , . . . , ℓ ) (27) ℓ ,...,ℓ |� 1 � 1 � Thus, when creating the initial set of trails in line 1 of Listing 2, Equation 26 determines the hotness of the callsite that is a virtual call. When extending the top trail in line 7 of Listing 2, Equation 27 determines the hotness of the callsite that represents a virtual call. Example. To illustrate the preceding equations, consider the run- ning example from Listing 1, and its calling foreach:3 context hotness=N F.apply hotness=N +N in the adjacent igure, which ends with a virtualapply call. to F.apply G.apply F.apply The apply is a base method, and its concrete implementations are F.apply and G.apply. If this context is used to create an foreach:3 foreach:3 initial trail, then bF.apply oth the and the G.apply invocation Initial trail creation Trail extension counts contribute to hotness. However, if a trail that consists of a single breadcrumb F.apply is extended with its calling context foreach:3, then onlyF.apply’s invocation count contributes to hotness, because G.apply is not invoked in the extended trail. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 31 Determining the hotness of direct callsites. Unlike the virtual callsites, the direct callsites do not have the invocation-count records in Native Image PGO. The hotness of a direct call atℓ lo in cation the calling context ℓ , . . . , ℓ , ℓ must be computed from the branch probabilities of the subroutine � that corresponds to 1 �−1 � � the last location ℓ of the calling context. To do this, we irst extract the Π set of the proile entries ℓ ,...,ℓ ,� |� 1 �−1 � ′ ′ ′ ℓ , . . . , ℓ , ℓ that end with a location ℓ that is inside the subroutine � , such that ℓ is the location of a branch 1 �−1 � � � � instruction. We then use the ControlFlowGraph class of the Graal compiler [13] to create a control-low graph of the subroutine � , in which the basic blo � -rckelative frequencies are computed using the branch execution � � counts fromΠ . The � -relative frequency of the basic block that contains the dir ℓ eis ct call then multiplied � |� � � with the invocation count� of to obtain the count in the respective calling-context: ℎ = � · �(��� (� , Π ), ℓ ) (28) ℓ ,...,ℓ ,ℓ |� ℓ ,...,ℓ |� � ℓ ,...,ℓ ,� |� � 1 �−1 � 1 �−1 � 1 �−1 � Above, ��� returns the control-low graph of the subroutine � for the branch proiles Π , � retrieves the � � |� � -entry-point-relative frequency of the basic block that contains theℓlo in cation the given control-low graph, � � and � is the number of times that the metho � dis entered from the calling conte ℓ , .xt . . , ℓ , which ℓ ,...,ℓ |� � 1 �−1 1 �−1 � ends with a call�to . This hotness value is used both when creating an initial set of trails, and when extending existing trails. Example. To illustrate Equation 28, consider the running exam- ple from Listing 1 again, and its calling main:7,min:13 context , Location of the direct call foreach which ends with a direct call foreach to . To compute the hot- to foreach in min ness of the direct call foreach to at main:7,min:13, we extract min:13 min:.. the set of branch proiles Π that correspond to call- main:7,min|� main:7 min:.. min:.. ing contexts of the form main:7,min:X where min:X is any min:.. main:7 main:7 main:7 location in min. The branch proiles in Π are then main:7,min|� min CFG used to create a control-low graph of min, and a mapping from main:7,min main:7|min main:7 basic blocks to their frequencies relative to the entry point to min. We use this mapping to obtain min the-relative frequency κ =N ⋅f(CFG(min, Π ), min:13) main:7,min:13 main:7|min main:7,min �(��� (min, Π ), min:13) of the basic block that con- main:7,min|� tains the location min:13 of the direct call, and multiply it with the number of times � that the method min was entered frommain:7. The result is the hotness of the main:7|min direct callmain:7,min:13 at . Estimating the attenuation of a calling context. As we have just previously shown, in our implementation, direct calls are not represented in the proiles, so the attenuation-factor calculation, deined in Equation 33, must be modiied to include those direct calls in the denominator: ℓ ,...,ℓ |� 1 � � (�) ≡ Í Í (29) ℓ ,...,ℓ 1 � ℎ + ℎ �|� �|� �∈directCallers(�) (�,ℎ )∈callerProiles(�) �|� Above, the denominator is the sum of the hotnesses ℎ of contexts� that directly call � (as per Equation 28), �|� and the hotnesses ℎ of contexts� that indirectly call � (as per Equation 27). The direct-call hotness and �|� attenuation-factor calculations are cached to decrease the overhead. Determining the calling contexts. To compute the set directCallers(�), our implementation preprocesses the IR of the methods in the HostedUniverse, and creates a mapping from each method to the list of its callsites ś this callee-to-callsite table contains both the direct and the virtual callsites. The mapping is also used to implement the CallingContexts policy from Section 3.4. ACM Trans. Program. Lang. Syst. 32 • Vukasovic and Prokopec 5 EVALUATION The main objective of the evaluation is to compare the performance of the proposed ahead-of-time inlining and compilation-scheduling algorithm with the existing state-of-the-art inliner that is97use ] (Se d in ction GraalVM [ 5.1). To demonstrate that the comparison is fair, we inspect a range of parameters that afect inlining ś for both algorithms, we ind the parameter values that give the best possible performance (Section 5.2). Furthermore, the evaluation shows that the new inlining algorithm achieves improved performance with a minimal compiled-code size increase (Section 5.3). To characterize how the diferent components of the algorithm afect peak performance of compiled programs, we then analyze the impact of those diferent algorithm components. In Section 5.5, we evaluate how the average length of the partial contexts correlates with the peak performance of compiled programs. Then, in Section 5.6, we show how heuristics such as the inlining-budget boand ost the trail expansion formally deined in Section 3.2 afect the peak performance, and how we tuned the threshold for the initial set of hot contexts. In Section 5.7, we explain the performance diferences between ahead-of-time and just-in-time compilation with GraalVM, and we demonstrate that some of the diferences are not due to the inlining decisions. Appendix B contains a case-study, in which we explain how our proposed inlining algorithm deals with the problems that were described in Section 2 on the example of a lame graphmnemonics of the benchmark. Experimental setup and methodology.Benchmarking was conducted on an Intel Xeon E5-2699v3 CPU with 18 cores and hy- Benchmark NI Iterations JVM Iterations perthreading, with 264 GB main memory and tmpfs ile system, h2 10 16 running Oracle Linux Server release 6.10. During the experi- fj-kmeans 20 40 ments, turbo boost was disabled and we set the frequency of mnemonics 20 60 all CPU cores to 2.3GHz to eliminate the efects of dynamic fre- par-mnemonics 20 60 quency scaling. All experiments were conducted as follows. For philosophers 15 30 each data point, we did 5 separate measurements in diferent reactors 10 10 process instances, running diferent GraalVM Native Image (Na- rx-scrabble 80 150 tive Image 20.3.0-dev (Java 8, revision: 7955c628b5c) with the scala-stm-bench7 30 60 default garbage collector) conigurations, or JVM (depending scrabble 60 250 on the speciic experiment). Within each process instance, we apparat 10 20 repeatedly executed the benchmark for a predeined number of kiama 40 120 repetitions � , where � was selected on a per-benchmark basis to scalac 40 120 ensure that the steady state is reached before 60% repetitions are scaladoc 40 120 completed. We considered the benchmark steady once it ran for scalap 120 250 at least 20 seconds, and after the coeicient of variance reaches scalariform 40 120 a threshold 74 [ ]. Warmup time for GraalVM Native Image is tmt 12 16 shorter than the warmup time on JVM. There are only several initialization steps of the image heap executed at runtime, before Table 7. Number Of Iterations Per Benchmark the main method of the benchmark is invoke 120 d].[ Figure 5 demonstrates that a benchmark’s running time becomes stable after only a couple of iterations. The number of repetitions of each benchmark for Native Image and JVM is shown in Table 7. We then computed the average execution times across the last 40% repetitions of all 5 measurements. In the results, we also show the standard deviation, except when presenting the impact on the code size (where the results were stable, and the standard deviation was insigniicant). Workloads. We used 16 benchmarks from DaCapo [46], Scalabench108 [ ], and Renaissance99 [ ] benchmarking suites that Native Image was capable of compiling. A subset of benchmarks from Renaissance mnemonics suite,( par-mnemonics, and scrabble) on which we performed the analysis conduct the data manipulation using Java 8 ACM Trans. Program. Lang. Syst. 30 40 20 60 26 39 19 59 25 35 18 21 31 17 20 30 16 16 21 15 15 20 14 11 11 11 35 10 10 10 9 9 9 5 5 5 4 4 4 3 3 3 2 2 2 2 1 1 1 1 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 33 time (ms) 7,000 fj-kmeans 6,000 5,000 4,000 3,000 2,000 1,000 iterations → time (ms) kiama iterations → time (ms) 8,000 mnemonics 6,000 4,000 2,000 iterations → time (ms) scrabble iterations → Fig. 5. Warmup Curves on Native Image Streams. The rx-scrabble benchmark solves the same problem as does the scrabble benchmark but relies on the RxJava framework to do so. Thephilosophers benchmark solves the dining philosophers concurrency problem using the ScalaSTM framework, which is also usedscala for the -stm-bench7 workload. Thereactors benchmark consists of a message-passing workload, while fj-kmeans the benchmark performs K-means algorithm using the Fork/Join framework. DaCapo benchmark h2 executes a set of database transactions. The apparat benchmark from the Scalabench suite optimizes iles with speciic extensions, kiama consists and of a language-processing workload. Thescalac, scaladoc, and scalap benchmarks represent the Scala compiler, the Scala documentation generator, and the decoder for the pickled classile information, respectiv scalariform ely. The benchmark is a code formatter for programs written in Scala,tmt andembodies a tool for the unlabeled-code analysis. 5.1 Comparison with Other VMs and Inlining Algorithms In the main experiment, we compare the performance of the ive coniguration runs. Three of them represent the native-image runs default-e ( e, pgo-ee, pgo-aot-inline-e ), ewhile the remaining two conigurations stand for the HotSpot runs (graalvm-ee-jit , c2-jit). The default-eeconiguration does not include any proile-guided optimizations ACM Trans. Program. Lang. Syst. 34 • Vukasovic and Prokopec Benchmark Default PGO PGO-AOT-Inline GraalVM-JIT C2-JIT h2 13348 ms 10200 ms 10496 ms 6526 ms 6464 ms fj-kmeans 4709 ms 4493 ms 4456 ms 1824 ms 1919 ms mnemonics 9065 ms 5812 ms 4215 ms 2723 ms 6048 ms par-mnemonics 8329 ms 5401 ms 3988 ms 2295 ms 5111 ms philosophers 23889 ms 23056 ms 23010 ms 16320 ms 5809 ms reactors 35213 ms 31133 ms 31104 ms 17985 ms 20914 ms rx-scrabble 406 ms 335 ms 320 ms 291 ms 330 ms scala-stm-bench7 3812 ms 3089 ms 1814 ms 1603 ms 1480 ms scrabble 87 ms 63 ms 49 ms 43 ms 144 ms apparat 13283 ms 8133 ms 8374 ms 5526 ms 9860 ms kiama 400 ms 342 ms 313 ms 210 ms 287 ms scalac 1539 ms 1206 ms 1174 ms 1009 ms 1241 ms scaladoc 1312 ms 1011 ms 946 ms 855 ms 1180 ms scalap 189 ms 159 ms 155 ms 107 ms 128 ms scalariform 544 ms 463 ms 461 ms 345 ms 458 ms tmt 17875 ms 10159 ms 10108 ms 7025 ms 10970 ms Table 8. Benchmark Running Time (PGO), pgo-ee uses the existing proile-guided optimizations of Native Image (described in Sepgo- ction 4.1), and aot-inline-euses e our new proile-driven compilation-scheduling and inlining algorithm on top of the existing proile-guided optimizations of Native Image. In this experiment, we used the ixed values of the inlining parameters in all of the conigurations. The fourth coniguration graalvm-ee-jitrepresents HotSpot JVM that uses the the Graal Enterprise Edition compiler in JIT mode and the ifth coniguration c2-jitassumes HotSpot JVM using the default JIT server (C2) compiler. The results of all ive conigurations are shown in Table 8, such that each column represents the results of one coniguration in the followingdefault-e order: e, pgo-ee, pgo-aot-inline-e , graalvm-e e e-jit , and c2-jit . Compared to the default-eeconiguration, the proposed algorithm brings improvements betw−een 55% 10in 14 benchmarks, and in two benchmarks, the improvements are less than 10%. The diference betweenpgo-ee and pgo-aot-inline-econigurations e is more relevant, since it directly shows impact of our new inliner compared to the previous use of the proiles. This is why we single out these two conigurations, and present their results also in Figure 6. The x-axis shows the benchmarks on which we conducted the main experiment. The plot contains two bars per benchmark, and each bar represents the results of a benchmark run with one of the two conigurations. All performance results are normalized against the pgo-ee coniguration and presented on the y-axis. The proposed algorithm has the best improvements on the benchmarks scala-stm-bench7, mnemonics, par-mnemonics, and scrabble, improving their runtime by about 40%, 27%, 26%, and 22%, respectively. The kiama and scaladoc benchmarks are improved in the range of−510%, while the range of improvementrx-scrabble for , scalac, and scalap benchmarks is between .25% and 5%. Five benchmarks show the improvement up to 1%, and in two benchmarks h2( and apparat) we observed a slowdown of less than 3%. ACM Trans. Program. Lang. Syst. 10108 ms 10159 ms 461 ms 463 ms 155 ms 159 ms 946 ms 1011 ms 1174 ms 1206 ms 313 ms 342 ms 8374 ms 8133 ms 49 ms 63 ms 1814 ms 3089 ms 320 ms 335 ms 31104 ms 31133 ms 23010 ms 23056 ms 3988 ms 5401 ms 4215 ms 5812 ms 4456 ms 4493 ms 10496 ms 10200 ms tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 35 pgo-ee pgo-aot-inline-ee normalized time 1.000 0.900 0.800 0.700 0.600 0.500 Fig. 6. Benchmark Running Time (Lower Is Beter) 5.2 Impact of the Inlining Parameters on Performance In order to make sure that the performance of the conigurations is fairly measured and compared, we ran the experiments with diferent parameters with an impact on the expansion and inlining during a method compilation and analyzed the results. In this paper, we refer to the procedure of searching for the best inliner parameter values as tuning . Inliner tuning is an iterative search process whose goal is to ind the combination of the parameters that leads to the best peak performance of the programs compiled with that inliner. Tuning of the Inlining Parameters. The tuning process is conducted on parameters �, � and � from Equa- 1 2 tions 22 and 23. These parameters directly impact the amount of inlining in compilation expansion units inertia ś base-value � drives the amount of call-tree exploration that the inliner performs, relativ while e beneit coeicient � and base target spending� drive the beneit threshold for deciding whether a method should be inlined, efectively limiting the budget that the inliner has available97 for ]. The inlining inliner[explores a larger part of the call tree for higher values�of , and tends to make larger compilation units for smaller�values and larger of values �of. 1 2 We tuned the parameters �, � and � separately, as follows. For the tuning of each parameter �, we irst set the 1 2 value of all the other parameters to their default values, which were previously tuned for the existing Graal’s inliner 97].[We then used a variant of the simplex algorithm 25, 61][to determine the range in which the optimal value of the currently-tuned parameter � is, keeping all the other parameters locked. Starting from the initial value� , we explored the values � ± �· 2 at each step �, until inding a range with an inlection point, that is 0 0 � � � [� − �· 2 , � + �· 2 ] such that exists� for which � ± �· 2 has a better itness value than the boundaries of the 0 0 0 range. For the itness, we used the geometric mean across all benchmarks. Then, we divided that range into 10 to 15 equidistant steps, and searched for the optimal itness within these steps. The itness on individual benchmarks for the parameter �, while all other parameter values are locked, can be seen on the x-axis of Figure 7. We note that the process of tuning the parameters individually could be improved by multidimensional tuning of all the parameters, but we note that we had to build the native images of all the benchmarks for every datapoint (both the instrumentation and the optimized image), and simultaneous multi-parameter tuning would be much more expensive (it exceeded the amount of machine time available to us). ACM Trans. Program. Lang. Syst. 36 • Vukasovic and Prokopec Fig. 7. Tuning Results forExpansion-Inertia the Base Value Parameter (pgo-aot-inline-ee (×) vs pgo-ee (◦))(Lower Is Beter) The process of tuning is performed using the same methodology and setup described in the begining of Section 5. For each value of the parameter we performed 5 separate measurements in diferent process instances, running the two main GraalVM Native Image conigurations pgo-ee (and pgo-aot-inline-e ). eBased on this tuning procedure, we chose the values� = 550, � = 0.0002, and � = 300 as defaults for our modiied inliner. 1 2 Expansion-Inertia Base ValueThis . parameter directly afects the amount of the call tree that gets explored before the inliner decides which parts of the explored call tree must be inlined, and corresponds � to the value from Equation 22. We found that this parameter has the most signiicant impact on the performance of the inliner. In what follows, we show the efect of this parameter onpgo-e the e and the pgo-aot-inline-econigurations. e Each plot in Figure 7 compares the performance of one of benchmarks for the two main run conigurations across the interesting range of parameters. The x-axis represents the values of the expansion-inertia base value, while the y-axis show the running time of the benchmark in the corresponding plot. The running time is expressed in milliseconds. We analyzed these plots to determine the best choice for the default parameter value. For the majority of the benchmarks, both conigurations achieve the best performance when the parameter is between 400 and 550, with a few benchmarks achieving better performance between 1000 and 1300. The new inliner achieves better performance for all parameter values on 11 benchmarks, rea onctors it achieves better performance for most parameter values, on apparat, fj-kmeans and philosophers achieves similar performance across all parameter values, and is strictly worse h2on . Figure 8 compares the best performance for some parameter value, chosen separately for each of the two conigurations (i.e. the result of tuning each inliner on each benchmark separately). The diferent benchmarks are shown on the x-axis, and the normalized running time is shown on the y-axis (a lower value means better ACM Trans. Program. Lang. Syst. 9974 ms 10194 ms 455 ms 468 ms 155 ms 160 ms 940 ms 1000 ms 1170 ms 1173 ms 310 ms 331 ms 8284 ms 8208 ms 49 ms 56 ms 1825 ms 3031 ms 318 ms 334 ms 28041 ms 30243 ms 22921 ms 22903 ms 3861 ms 5376 ms 4230 ms 5419 ms 4423 ms 4426 ms 10466 ms 10001 ms tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 37 pgo-ee pgo-aot-inline-ee normalized time 1.050 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 Fig. 8. Running Time for Per-Benchmark-Optimal Expansion-Inertia Base Values (Lower Is Beter) performance). The reference value.01is thepgo-ee coniguration, which does not use our new compilation and inlining policy pgo-aot-inline-e . The coniguration e (the proposed inliner) achieves better peak performance on the 11 benchmarks, and a similar performance on 3 benchmarks. These individually tuned results are relevant for AOT compilation, since oline compilation of diferent programs allows tuning the parameters for each program independently (this is less applicable to online, JIT compilations). 5.3 Impact on the Compiled-Code Size We next demonstrate that the previously shown performance improvements incur an acceptable increase in compiled-code size. The goal is to validate that increasing the budget only for the hot compilation units does not signiicantly impact the compiled-code size, as argued in Section 3. Figure 9 compares the compiled-code size with the pgo-aot-inline-ee coniguration against the compiled-code size with pgo-e thee coniguration. We also compare the proposed algorithm against the approach of globally increase the inlining budget for all the compilation units (i.e. not just the hot ones), which is represented by pgo-enhance the d-inlining-budget-e coniguration. e The x-axis shows the benchmarks, and the y-axis shows the compiled-code size. Each benchmark is associated with one bar for each coniguration. The results are normalized against pgo-eethe coniguration, which has the least amount of inlining. With our new inliner, the compiled-code size is increased.in 8% on thethe range from 0 par-mnemonics benchmark, up to 9% on rx-scrabble, compared to the pgo-ee. However, for 10 out of the 16 benchmarks, the size is increased only up.5% to. 2When increasing the inlining budget globally, the size-increase goes up to 2.5×. The smallest increasepgo-enhance for d-inlining-budget is around 9% for par-mnemonics, for which we witnessed the lowest size-increase pgo-aot-inline-e for ase well. However, the average size-increase forpgo-enhanced-inlining-budget coniguration is approximately ×, which 2 we consider large. We conclude that the size increase of .8 0− 9% in the case of the pgo-aot-inline-econiguration e (the proposed algorithm) is not signiicant, and is acceptable in practice. ACM Trans. Program. Lang. Syst. 16.3 MB 8.8 MB 8.6 MB 26.9 MB 11.2 MB 10.6 MB 15.2 MB 7.9 MB 7.7 MB 61.8 MB 34.4 MB 34.1 MB 74.9 MB 38.6 MB 38.3 MB 14.8 MB 8.5 MB 8.2 MB 24.1 MB 13.0 MB 12.6 MB 11.1 MB 6.9 MB 6.8 MB 13.9 MB 8.1 MB 8.0 MB 12.8 MB 8.0 MB 7.3 MB 14.1 MB 8.6 MB 8.3 MB 11.1 MB 7.0 MB 6.9 MB 7.4 MB 6.8 MB 6.8 MB 10.2 MB 6.7 MB 6.6 MB 10.2 MB 6.6 MB 6.5 MB 21.6 MB 12.9 MB 12.4 MB tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 38 • Vukasovic and Prokopec pgo-ee pgo-aot-inline-ee normalized size pgo-enhanced-inlining-budget 2.500 1.900 1.700 1.500 1.300 1.200 1.100 1.000 0.900 Fig. 9. Compiled-Code Size (Lower Is Beter) 5.4 Impact on the Compile Time In this section, we present the impact of our algorithm on the compile time. Even though the compilation is performed ahead-of-time, and it is not crucial to keep the compilation overhead low, we demonstrate that the overhead is reasonable. Figure 10 compares the compilation time pgo-aot-inline-e for coniguration e against the compilation timepgo-e fore coniguration. The x-axis contains the benchmarks, and the y-axis shows the normalized compilation time. Each bar represents a compilation time of a benchmark ran with a speciic coniguration. The results are normalized against pgo-e the e coniguration. Our inlining algorithm increases the time of the compilation up to 23%, as observed on the exampleapp ofara thet benchmark. For 12 out of the 16 benchmarks, compile time is increased in range.8% from to 10%. 2 5.5 Impact of Context Length on Performance One of the aims of the proposed algorithm is to utilize context-sensitive proiling information to improve inlining decisions. Context length is the number of locations in the calling-context of a proile entry. Longer contexts usually result in more precise proiling information. By varying the average context length of the input proiles, we show that there exists a dependency between the context length, and the performance of the new inliner. The context lengths were varied by limiting the inlining depth in the instrumentation image, and simultaneously boosting the inlining budget. For each benchmark, the depth was varied until boosting the inlining budget no longer resulted in longer average context lengths (the limit on the average context length eventually occurs because virtual calls cannot be inlined in the instrumentation image). Figure 11 shows the subset of benchmarks on which we observed a noticeable impact of varying the context lengths. These analysis showed less efect on the rest of the benchmarks. The plots contain the performance data for the average context-length in the range from 1 up to the longest average context length we provided from the partial contextual information (3-4 depending on the benchmark). appara The t and scala-stm-bench7 benchmarks have the largest variation:−3540% higher performance with average context length between 3 and 3.5, compared to using context-insensitive proiles. scrabble The benchmark shows an improvement ACM Trans. Program. Lang. Syst. 80.3 s 75.6 s 50.7 s 47.1 s 35.6 s 33.1 s 166.5 s 151.7 s 262.0 s 218.3 s 40.3 s 37.9 s 64.5 s 52.4 s 24.0 s 23.3 s 31.1 s 26.8 s 28.5 s 27.0 s 33.8 s 31.3 s 24.0 s 23.0 s 25.1 s 23.7 s 22.2 s 21.1 s 24.2 s 20.7 s 46.3 s 42.9 s tmt scalariform scalap scaladoc scalac kiama apparat scrabble scala-stm-bench7 rx-scrabble reactors philosophers par-mnemonics mnemonics fj-kmeans h2 Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 39 pgo-ee pgo-aot-inline-ee normalized time 1.250 1.200 1.150 1.100 1.050 1.000 0.950 Fig. 10. Compilation Time (Lower Is Beter) Fig. 11. Context-Length Impact on the Benchmark Running Time (Lower is Beter) of approximately 18% tmt , 12%, scalap goes up to 8%, while on the remaining benchmarks in Figure 11, the improvement is−45% when the more precise proiles are present. 5.6 Impact of the Inliner Heuristics on Performance In the following experiments, we assessed the impact of the speciic algorithm features on the benchmark performance. In each experiment, we present results on a subset of benchmarks that show the greatest impact of the speciic component of the algorithm. Transitive compilation of the hot callees with the increased inlining budget. After a method is compiled, its remaining non-inlined callees become the next compilation units. We refer to their transitiv compilation . e as ACM Trans. Program. Lang. Syst. 40 • Vukasovic and Prokopec These callees are compiled as either hot, with the increased compilation budget, or as cold, with the default budget ś the speciics of deciding are explained in Section 3.6. In this experiment, we compared the proposed algorithm against a variant in which IsHothe t policy from Equation 39 is replaced withIsHo simply t = ⊥. In Table 9, column titled "Hot Callees" shows results of our unmodiied algorithm, while the second column titled "No Hot Callees" shows performance when all callees are treated as cold. The improvement IsHotofheuristic the from Equation 39 is in the range of 22% to 28% in case Stream of the -based benchmarks, while for the other benchmarks, the improvement is up to 5%. Trail expansion.The proposed algorithm iteratively expands the initial set of trails across the possible calling contexts. The Benchmark Hot Callees No Hot Callees details of this process are explained in Section 3.4, Call- and the scaladoc 938 ms 968 ms ingContexts policy is deined by Equation 32. In this exper- scalap 157 ms 160 ms iment, we disable the expansion by changing that policy to mnemonics 4208 ms 5853 ms CallingContexts = ∅. Note that by excluding expansion from par-mnemonics 4003 ms 5441 ms the algorithm, the set of hot compilation units contains only the reactors 30582 ms 31442 ms methods that are the roots of the calling contexts of the initially scrabble 49 ms 63 ms chosen proile entries. Figure 12 compares the benchmark run- rx-scrabble 315 ms 323 ms ning time when the trail expansion is disabled (red curve), and Table 9. Transitively Compiling Hot Callees as Hot the default setup with the trail expansion enabled (blue curve). Compilation Units Figure presents the initial hot-context threshold tuning process. Regardless of the threshold value, running time for benchmarks Apparat, Kiama, Scalariform, Scalac, Scaladoc, and Scrabble is strictly better when the expansion is active. Comparing the peak performance on both curves shows that the benchmarks proit up to 20% from this feature. Size of the initial hot contexts set. The constant � from Equation 30 represents the proportion of total time that needs to be spent in a given proile entry in order to consider that entry hot for the initial set of proiles. In this section, we show that there is a range of optimal values � when oftrail expansion is turned on; when the trail expansion is disabled, however, the optimal�values are in of a much narrower range, which varies across benchmarks. Figure 12 contains a subset of the benchmarks that were particularly afected by the � ,value and shows how the diferent values �ofafect performance. The x-axis contains the range of values � , while of the y-axis represents the running time. The greater threshold � implies less initial hot compilation units, i.e. less compilations with the increased inlining budget. Incr� easing above a certain value leads to having no hot compilation units, which is the equivalent ofpgo-e the e coniguration. Based on the experiments with most benchmarks, we found that when the trail expansion is turned, the of optimal values� of lie on the range of .05% 0 up to 0.5% ś in this range, � varies the performance of the no-expansion variant by up to 10%. On most benchmarks, decreasing the amount of hot compilations below a certain threshold negatively afects the performance as there are too many trails, and the best performance for the no-expansion variant is achiev�edbfor etween 0.12% and 0.15%. (though, some of the benchmarks, askiama, proit from the greater initial set of hot contexts). However, the range of optimal values of � for the variant that does use trail expansion is between .008% and 0.25% on most of the benchmarks, which indicates that trail expansion makes the algorithm less sensitive to� .the choice of 5.7 Performance Diferences Between GraalVM on HotSpot and Native Image As shown in Figure 6, when the Graal compiler is used on the JVM (HotSpot or OpenJDK, which use just-in-time compilation), the performance is noticeably higher compared to GraalVM Native Image (which uses Graal in an ahead-of-time compilation mode). Despite the improvements of our inliner on GraalVM Native Image, there is still potential for achieving performance that is closer to that of GraalVM on the JVM. Aside from ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 41 Fig. 12. Tuning the Initial Hot-Context Threshold (With Expansion × vs Without Expansion◦; Lower is Beter) opportunities for better inlining decisions, we point out that there are other reasons for the observed performance diference between HotSpot and Native Image. In this section, we present the features and optimizations that are implemented diferently in these two VMs (or not supported at all on Native Image). This is not a comprehensive overview of the diferences in Graal’s compilation on the JVM and on Native Image, but it shows some of the diferences ś in several cases, we analyze their performance implications by disabling speciic features and optimizations on the JVM. Snippets. Snippets are a mechanism in the GraalVM compiler used to express (in a re- Benchmark Default No arraycopy No arraycopy & copyOf stricted subset of Java) low-level implementa- kiama 210 ms 278 ms 295 ms tions of high-level operations 111]. For [ exam- mnemonics 2723 ms 2863 ms 5470 ms pleinstanceof , (runtime type-check) against par-mnemonics 2295 ms 3604 ms 4398 ms a class without subclasses can be expressed as scalap 107 ms 111 ms 113 ms a read of the object’s header, and a comparison scrabble 43 ms 44 ms 47 ms against a constant. Similarly, a call System. to tmt 7025 ms 7905 ms 8049 ms arraycopy (which copies elements between two Table 10. Impact of Array Copy Snippets in the Graal Compiler on arrays) can be expressed as a loop directly in the the JVM compilation unit thatarraycopy calls , and can be optimized when the arrays are not aliased, and their types known. Most snippets are architecturally indepen- dent due to being expressed in a high-level programming language. However, they can contain platform-speciic building blocks, in the form of special łintrinsic method callsž that map to e.g. machine instructions, so snippet implementations vary across compiler conigurations, underlying hardware platforms, and the VMs. Consider the methodArrays.copyOf from the JDK, which duplicates a given array, and its intrinsiications on HotSpot (JVM) and on Native Image. Figure 13 contains call frames from the lame graphs mnemonics of the benchmark, both when Graal is used on HotSpot, and within Native Image. Each frame in a call stack is a compilation unit, such that the callee units are placed on top of their caller units. The call stack in Figure 13 contains the compilation unit for ArraySpliterator.forEachRemaining the method from the JavaStream ACM Trans. Program. Lang. Syst. 42 • Vukasovic and Prokopec Fig. 13. Diference in thecopyOf Snippet Implementation on Native Image and JVM (Flame Graph Fragment) library. In the case of the Native Image lame graph, there is a separate framecopyOf for the, which is a specialized Native Image subroutine that does the array allocation and copying ś the snippet merely calls the proper built-in method. On the JVM, there is no separate call ś the snippet embeds the duplication logic directly into the IR of forEachRemaining. While for larger arrays, there is usually no observable performance diference between the two versions, for a lotcopyOf of calls on smaller arrays, this results in a noticeable overhead. In Table 10, we show the performance diferences on six bench- marks on which we observed the highest impact of disabling Graal’s Benchmark Parallel GC Serial GC snippets for System.arraycopy and Arrays.copyOf on the JVM. scrabble 43 ms 68 ms We realize that disabling these two snippets does not precisely cor- scalac 1009 ms 1141 ms respond to the Native Image version, because the native C++ JVM reactors 17985 ms 22718 ms implementationarraycopy of is diferent than the implementation kiama 210 ms 243 ms of thearraycopy foreign call on Native Image. However, this ex- Table 11. Comparisons of Garbage Collectors periment shows the magnitude of the impact arraycopy that and with the Graal Compiler on the JVM copyOf snippets have on these benchmarks. Garbage Collection.The Java programming language uses garbage collection (GC) as the automatic memory-management technique. The JVM provides multiple GC implementations in each JDK version. We ran the benchmarks on GraalVM Enterprise Edition running on JDK 8, which by default uses the Parallel Garbage Colle19ctor ]. Parallel [ GC freezes the application threads while performing the collection. However, unlike the Serial GC which was the default in early JDK versions, Parallel GC uses multiple threads to perform garbage collection, which improves its throughput. The default garbage collector in Native Image VM is a serial garbage collector ś it pauses the application threads, but uses a single colle 21].ctor thread [ Although the serial GC implementations on JDK 8 and on Native Image are diferent, it is useful to compare the performance of benchmarks running on JDK 8 with the Parallel GC and the Serial GC, as this gives a rough estimate of how much a diferent GC implementation would afect Native Image. Table 11 shows 4 benchmarks on which the Parallel GC considerably improves performance. The greatest impact on the benchmark’s running time was observed for the scrabble benchmark ś around 35%. Parallel GC speeds up most of the remaining 12 benchmarks by up to 5%. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 43 Speculative Optimizations. JIT compilation on the JVM uses speculative optimizations that speculate about the characteristics of the values in the program in order to optimize the code better and improve performance. Each speculative code optimization is preceded by a computationally inexpensive check that conirms that the speculation is valid. If the check fails, executing the optimized code would be incorrect, so a deoptimization is triggered ś the execution is transferred to the interpreter, and the code is compiled again later, but with less speculations 65[, 71]. AOT compilation on Native Image does not support deoptimization, and therefore does no speculation. In this section, we show that speculations improve JVM performance on a subset of benchmarks. We identiied three speculative optimizations in the Graal codebase for which we observed the highest impact: specu- Benchmark Speculations ON Speculations OFF lative guard motion 65][(which generalizes guard conditions apparat 5526 ms 5942 ms to make them more loop-invariant 22]),[ optimistic aliasing h2 6526 ms 6647 ms analysis (which speculates that two pointers do not repre- mnemonics 2723 ms 2849 ms sent the same object), and speculative type-checking (which scalac 1009 ms 1053 ms speculates that simpler type-check implementations can be scalap 107 ms 116 ms tried irst). These optimizations are also used on Native Image, tmt 7025 ms 7963 ms but without the łspeculationž part ś they will never create a Table 12. Impact of Speculative Optimizations in the deoptimization point. To bring JVM closer to Native Image, Graal Compiler on the JVM we turned of the speculation in these optimizations (the opti- mizations are still enabled,maySpeculate but the calls return false, whereas in the default JVM setup maySpeculate returns false for a speciic code location only after that location previously caused a deoptimization). Table 12 shows six of our benchmarks on which we observed a clear slowdown when disabling speculations: apparat, h2, mnemonics, scalac, scalap, and tmt. On these, slowdowns from disabling the aforementioned speculations range from 13% to 2%. 5.8 Profiling Impact on the Performance To conclude the evaluation, we present the impact of the proiling on the compile time, and the running time Compile Time Running Time of the benchmarks. As we explained in Section 4.2, in Benchmark Default Proiling Default Proiling GraalVM Native Image, proiling is realized in a sepa- h2 36.6s 46.1s 13.3s 23.6s rate compilation mode ś by building an instrumentation mnemonics 20.2s 25.7s 9.6s 21.7s image. The compilation pipeline in the instrumentation- reactors 26.4s 34.6s 35.2s 141.3s image-build process contains a phase, which inserts the scalac 119.1s 164.2s 1.5s 5.7s counter nodes in the IRs of each compilation unit. The scalariform 38.4s 46.3s 0.5s 1.1s proiles are obtained by running the instrumentation Table 13. Profiling Impact on the Compile and Running Time image. Compiling a program with the input proiles is a separate process, performed by building an optimiza- tion image. In the previous experiments in Section 5, we presented diferent aspects of the performance of the optimization image. While the algorithm presented in this paper does not change how the proiling itself is performed in GraalVM Native Image, we demonstrate how it afects the compile time and the running time of the instrumentation image on a set of benchmarks. Table 13 demonstrates the impact of the proiling on the representative benchmarks from Renaissance, DaCapo, and Scalabench suites. To underline the efect of the instrumentation pass, we compare the time necessary to build and run the instrumentation image against the default image, which does not include any proile-guided optimizations. The performance of the benchmarks with the default coniguration, in terms of running the default image are presented and compared to the other conigurations in Section 5.1. We observe that the instrumentation ACM Trans. Program. Lang. Syst. 44 • Vukasovic and Prokopec afects the compile time up to 30% for most of the benchmarks. However on some benchmarks such scala as c we observed the increase of 37%. The instrumentation may introduce the slowdown in the running times of the benchmarks up to 4�, which we recorded for reactors benchmark. Since the proiling is performed to a separate binary and run as a separate process, performance of the optimized image is not afected by the longer time needed to build and run an instrumentation image. We believe that improving the process of obtaining the proiles is possible, but it is out of scope of this paper. Another beneit of having a separate process to collect the proiles is that, once they are stored to a ile, the same ile can be used for multiple optimization-image builds, i.e. compiling a program in an optimized coniguration does not require compiling it and running in the instrumentation mode in case there is at least one proiling ile for the same program from the previous builds. 6 DISCUSSION The goal of this section is to discuss how the proposed algorithm in this paper can be adapted to other compilers. For this purpose we chose the two most commonly used environments ś LLVM 7][and GCC [2]. To examine how our algorithm could be reused in LLVM and GCC, we focus on the proiling infrastructure, intermediate representation, detection of the frequently executed code, proile-guided optimizations, and the inlining optimization. To be clear, we did not reimplement or evaluate our algorithm in LLVM or GCC ś the objective of this discussion is to demonstrate that our algorithm could be used in other compilers, and to put our work into a broader context. 6.1 GCC IR. GCC uses three major intermediate representations: GENERIC 4], GIMPLE [ [5], and RTL [6]. GENERIC is a tree-like language-independent representation of a program used by a compiler’s front end. The midend of the compiler uses GIMPLE, a tree-like representation derived from GENERIC, in three-address form, as an additional restriction. GIMPLE tree is later on transformed into an SSA form, on which the majority of the optimizations is performed, including inlining. The last representation, RTL, is a low-level representation corresponding to a target architecture. Hot-code detection.Many optimizations in GCC beneit from the information about the hotness of79the ]. code [ In GCC hotness is determined on the basic-block level. A number of optimizations such as function inlining, block reordering, and loop unrolling, use the speciic predicate, which indicates whether a basic block can be considered as hot, cold, or never executed. This predicate is used mostly to avoid aggressive optimizations on rarely executed blocks. When the proiling information is available, a predicate is set for each basic block based on the frequency of its execution from the proiles, i.e the hotness of the block. Predicates for hot, cold and non-executed code are determined based on the thresholds that the block frequency must exceed, and which can be tuned. Proiling infrastructureSimilar . to GraalVM Native Image, the proiles are collected and used in the following manner [24]. The program is irst compiled with a lag which enables the proiling-by-instrumentation-phase. The output of running the resulting binary is a ile containing the instrumentation proiles, which will be used as the input of the second compilation of the program. The instrumentation counters are placed in a program’s CFG, and produce the proiles containing the information about the number of function invocations, number of executions of basic blocks, number of executions of each edge in CFG (and therefore the corresponding basic blocks), from which the probabilities of taking a branch are derived [79]. Inlining optimization. The inliner relies on the bin pack algorithm. It uses numerous metrics such as the maximal size of a compilation unit, maximal size of the inlining candidates, the growth of large functions, and so on, in order to prioritize the inlining alternatives before reaching 79]. When a limit the proiling [ information is available, the inlining-candidate callees are prioritized according to a cost-beneit function that uses the hotness proiles and the growth of the function in which the inlining happens. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 45 6.2 LLVM IR. LLVM IR [11] is a strongly typed low-level, three-address representation in SSA form, which allows unstruc- tured control low and uses phi values when merging control paths. Transforming Graal IR to LLVM IR is a straightforward process and all the basic compiler optimizations that work on the Graal IR can be implemented on the LLVM IR with a similar level of efort. Hot-code detection.The inliner relies on several parameters to determine the threshold for deciding whether the code is hot or cold. Optimizations rely on the hot-code classiication when the higher optimization levels are enabled. Hot/cold-splitting optimization uses the edge proiles to classify basic blocks of the current compilation unit into hot and cold. This is also useful for the optimizations such as function inlining and outlining, for which the LLVM implements outlining of the cold regions from the hot code [86]. Proiling infrastructurePr . oiling is traditionally enabled through the instrumentation technique. Proiles that can be collected and exploited contain the information about the hotness of the invoked functions and edges, and receiver types and the number of their occurrences for the virtual invocations, similarly to the proiling information in GraalVM Native Image. It is possible to collect both the context insensitive and callsite-aware proiles [12]. Inlining optimization. The inliner uses the hotness heuristic to ilter out cold indirect calls, and to focus on inlining the hot ones 8, 9].[Target methods corresponding to the most frequent receiver types from the virtual proiles are placed as direct calls if they exceed the set hotness thr40 esholds ]. The blo [ ck-level hotness information is exposed to the inliner, which uses this information by deining the callsite hotness thresholds globally and relatively to the function entr 10].yCost-b [ eneit analysis takes into account the size of the callee-candidates and the function in which the inlining takes place. Heuristics are used to compute the cycle savings per call site and also to limit the amount of recursive inlining. Substantial amount of inlining budget is directed towards more aggressively and precisely performing the inlining optimization around the hot code. 6.3 Discussion Above, we briely described the relevant aspects of LLVM and GCC. In the following, we discuss how our algorithm could be potentially applied to those compilers. Our hot-code-detection algorithm inds the hot inlining trails by expanding hot calling contexts in the proiles. In our implementation, input for the hot-code detection is a set of proiles that determine the basic-block frequency and the call-target probability on the indirect calls. The proile data in GCC and LLVM environments contains the same kind of information. They support performing the instrumentation after the inlining phase, which as a consequence has that the calling contexts from the proiles are partially context27 sensitiv ]. Our preop[osed hot-code detection algorithm can be applied to GCC’s and LLVM’s proiling data to produce the inlining trails. The trails can then be used to determine which callees are in the hot calling contexts, and adjust the hotness predicate for the corresponding basic blocks accordingly. Both described environments use hot-code-region-detection within multiple optimizations. They enable compiling the hot code and optimizing it with modiied budget. Hotness information can be used in inlining, as well as to drive the budget of other optimizations. Both compilers deine speciic threshold values based on which an execution is considered as frequent or not. The thresholds used in our algorithm can be tuned to align with those. Improving the inlining heuristics using the information of the code hotness is a topic of interest in the LLVM and GCC communities3].[ Generally, the aim is to improve the interprocedural optimizations by exploiting the hotness information, which is where the breadcrumb trails may be of the assistance because they connect multiple subroutines. The inlining heuristics in GraalVM, GCC, and LLVM use the cost-beneit analysis that take into account numerous metrics such as the size and the growth of the compilation unit to calculate the cost. Since ACM Trans. Program. Lang. Syst. 46 • Vukasovic and Prokopec both GCC and LLVM emphasize beneits of using the code hotness to prioritize the inlining of a hot call, our modiication to the existing inliner, which assumes giving a greater inlining budget to such calls can be easily incorporated. The inlining budget itself is determined through a diferent set of inliner parameters, deined by the heuristics of the inliner. Therefore, the inlining parameters would have to be tuned for the peak performance with the rest of the compiler’s optimization infrastructure. 7 RELATED WORK In this section, we present a survey of the related work on the proiling, and the usage of the proiling information to aid compilation, inlining heuristics, and other compiler optimizations. We irst present an overview of the common proiling techniques, and their evolution over time. We then review the prior work that focused on acquiring and applying partially contextual proiling data, and on the approximation of fully context-sensitive proiling data using partial proiling information. Finally, we compare our compilation technique with alternative techniques and optimizations that rely on proiles, with a special emphasis on inlining algorithms. Additionally, this section contains an extension of the Graal intermediate representation explanation from Section 4.1. Proiling strategies.One of the earliest uses of proiling was described by Knuth [83], who deine proile d the as a set of execution counts collected during the runtime of the program. Over time, the notion of proiles was expanded to include any metric that describes the program behavior, and that was collected during the execution of the program. The inception of proiling has raised the questions of how the proiles can be exploited to optimize the execution of computer programs, which information they should contain, and on how to decrease the cost of proile collection [102]. Broadly speaking, proiling can be classiied as either instrumentation-based or sampling-based. So far, nu- merous authors have observed that the exhaustive instrumentation (i.e. instrumentation of all the code of the program) provides more precise data compared to the sampling-based proiling 56, 64]. Some [ versions of the Netbeans IDE [17] and the Eclipse Test and Performance Tool Platform 14] come [ with the instrumentation-based proiling tools. However, the instrumentation is usually not suitable for online collection of the proiles, because it imposes a high overhead on the performance 116].[ According to Arnold et al. 36],[the instrumentation can degrade performance by between 30% and 1000%. The GraalVM Native Image, in which we implemented our algorithm, assumes the oline proile collection, which is why it is acceptable to use the instrumentation to gather more accurate execution counts of the proiled events. Some GCC compiler 56[] and LLVM [94] extensions can consume proiles from external tools, to assist compiler optimizations. Most compiler optimizations beneit from the proiling54 data: ], blo inlining ck ordering, [ path- duplication 88],[register allocation 70], and [ many others [98]. The ahead-of-time Scala Native compiler 110] [ supports instrumentation-based proiling, and uses proiles to guide optimizations such as devirtualization, method duplication, and block placement. Proiler Classiication.Another method of classiication is based on whether a proiler uses an online or an oline proiling scheme 117].[ Oline proiling assumes collecting proiles in the separate program runs after which there is a compilation process using them. AOT compilers usually exploit oline proilers. The GCC compiler has a mode for producing instrumented binaries for proile collection, and can use these proiles when creating the optimized binar 20].yOnline [ proiling is performed during the same program run, and is mostly exploited by JIT compilers. Most VMs use JIT compilation, and do proiling in the 15,irst 23, 50stage , 80, 122 [ ], and in some cases also proile their JIT-compile49 d].coFde lückiger [ et al. 72][proposed two-tier JIT compilation for R language which uses instrumentation in the irst tier to optimize default code, and a sampler on the optimized code to trigger reoptimization in the second tier with more type-speciicgprof code., Unlike which is primarily used to proile programs that are AOT compiled, most of the proilers, Valgrind such[28 as], Java Mission Contr[ol26], JProiler, YourKit , hprof, and perf, are not tightly coupled with either AOT or JIT compiled ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 47 code. In another words they can proile both. Jikes RVM 32,[34] uses an instrumentation-sampling framework to perform proile-guided optimizations such as method splitting 52], method[inlining, loop unrolling, and code motion. Partial proiling information. While the exhaustive instrumentation enables the highest accuracy, it usually beneits only applications that need very precise information, such as intrusion detection 48 or].debugging [ Several authors investigated the question of whether incomplete proiling information can be suiciently precise for common compiler optimizations, and how proiles can be approximate 31, 89, 90d].[It was observed that keeping the full calling contexts starting from the root of the program does not have a substantial impact on the proile-guided optimizations, and furthermore, storing fully calling-context-sensitive proiles increases the footprint of the data structures that stores the proiles. Various authors therefore argued for having length- bounded calling contexts 31, [101]. Ausiello et 37 al. ] colle [ cted the proiles with the calling contexts of length at most �, using a data structure calle �-calling-conte d xt forest(kCCF), which consumes less space. The authors concluded experimentally that shorter calling conte � betw xts eof en 10 and 20 are typically suicient to detect the most important control-low paths. While the Native Image PGO supports eicient generation of partial calling contexts, it also dictates the value �. As sho ofwn in Section 5.5, the average value�of is between 3 and 5 (depending on the workload), even though individual calling contexts can be several times longer. Serrano and Zhuang [106] obtain partial call traces using hardware-level tracing, and use them to reconstruct calling context information. In their technique, partial traces are merged if they contain a signiicant overlap. The result of the merge ispartial a calling-context tr(PCCT), ee which is similar to our trail data structure from Listing 4. Although Serrano and Zhuang solve a problem that is similar to ours (merging smaller PCCTs into larger PCCTs corresponds to our trail grafting), there are 4 important diferences between our proposed technique and the technique due to Serrano and Zhuang: (1) In our input proiles from Native Image PGO there, is no overlap for the same position in the activation . tree One node in the activation tree is always represented by exactly one proile entry. This is because Native Image PGO obtains proiles by instrumenting each compilation unit with unique counters, and each node in the activation tree is covered by exactly one compilation unit. While randomly collected trace samples exhibit overlaps to some degree, in our proiling data, for an entry with the calling ℓ , ... , ℓconte , ... ,xt ℓ , 1 � � there is no entryℓ , ... , ℓ , ... , ℓ that could be an overlap in the activation tree. � � � (2) Due to the diferences in the inputs, the design of the two algorithms is diferent. While the technique due to Serrano and Zheng inds overlaps between the proiles to merge the partial call trees together, the proiles in our technique have no overlaps, so their technique cannot be applied directly to our input proiles. Instead, our technique extends the partial contexts by determining the possible callers. This makes the reconstruction problem considerably harder, in our view. (3) The length of the traces that are available to us are typically shorter than those in Serrano and Zhuang’s technique. As we show in Section 5.5, the average context length is between 3 and 4 call frames, while the length of the contexts in Serrano and Zhuang’s technique depends on the hardware-sampling window size, and therefore can reach much longer paths (their paper mentions path sizes of up to 32). The reason is that the Native Image PGO cuts a partial context at a virtual call (which the inliner cannot inline in the instrumentation image, because this image does not have a proile input). There is a considerable consequence of having longer calling contexts ś Serrano and Zhuang report that for partial call trails of length 16 and above, over 80% of reconstructed calling contexts have single callers, and of length 32 and above, that percentage is even greater and exceeds 90%. On the other hand, they observed that the percentage is signiicantly smaller for shorter call trails. Our technique is tailored to ACM Trans. Program. Lang. Syst. 48 • Vukasovic and Prokopec reconstructing call trees from shorter contexts, and as such has to deal with multiple callers more often (which is challenging). (4) Finally, because we perform the expansions more aggressively, we dedicate a large part of the work to approximating the frequencies of the individual nodes in the reconstructed trail (i.e. partial call tree), to determine which of the possible callers more signiicantly contribute to the hotness of the code, and to aid the inliner with more precise frequency information later. In particular, we introduce the attenuation factors (Equation 33) each time we extend the trail upwards, to address the fact that the hotness of a trail is the sum of the hotnesses across each caller. Proiles in hot-code detection and inlining. Proiling is widely used to assist various compiler optimiza- tions20 [ , 29, 34, 56, 72, 103]. While it is diicult to present a complete account of all the optimizations that beneit from proiling information, path duplication 88], inlining [ 33, 54[], polymorphic inlining 76, 78],[speculative code motion65 [ ], function outlining 123], [register allocation 69], and [ proile-driven code motion 57],[are only some of the notable examples. In this section, we focus primarily on hot-code detection, and on using proiles to guide inlining decisions. Mytkowicz et al.93[] used hot-method detection as a criteria for evaluation Java sampling proilers. This metric is important, since incorrect hot-method identiication results in spending the optimization budget in code that is not frequently executed. The importance of hot-code detection was emphasized by Kistler et al.’s work [82] on continuous re-optimization of the hottest code. To identify the hot code and inline the relevant callsites, Krintz 85] e[xtended JikesRVM29 [ ] with both online and oline proile collection, and used the combined proiles to annotate the hot methods, and the callsites to inline. In that work, the estimation of method hotness is calculated based on the method invocation count, and the inlining of hot callsites is based on context-insensitive decisions. A number of inlining heuristics do cost-beneit analyses to decide whether to replace a callsite with the body of the target subroutine8[, 33, 51, 53, 54, 59, 97, 104, 105, 124]. While some inliners mainly use static information such as the size of the methods96[], bypassing proiles usually leads to poor performance. In most compilers, inliners rely on frequency and receiver-type proiles. Arnold et al.33[] compared the performance of various inlining techniques, and remarked that when the only information at disposal is static, all the callsites of the same method are either inlined or not, regardless of the callsite frequency. The other approaches they evaluated used proiling information to compute the inlining beneit. Their results show that more context-sensitive information allows an inliner to make better decisions, and achieve better peak performance. Scheiler’s global inlining104 algorithm ] prioritizes [ the inlining of the most frequently executed methods, while ensuring that the global code-size constraints are not violated ś the (context insensitive) invocation frequency is obtained from the proiling runs of the program. A compilation technique by Suganuma et115 al. ] relies [ on a hybrid form of proiling to detect the most important parts of the program, and to optimize them more aggressively. They use the simplest heuristics based on the static information to optimize the smallest methods, while the expensive optimizations such as inlining are conducted selectively on hot program sections. Their sampling technique determines the hot methods that should be compiled, and these methods are subsequently instrumented to obtain more precise proile information about the hot code. The proiles that they gather are context-insensitive, which impacts their precision. Inlining is hindered by indirect calls (i.e. virtual dispatches), which are common in object-oriented and functional languages ś since the call target is not known, inlining cannot be done accurately. This problem is ameliorated by proiling the receiver types at individual indirect callsites. As describe76 d by ] and GroHölzle ve et al.et[ al.78 [ ], polymorphic inlining can signiicantly improve program performance. However, polymorphic inlining is only as good as is the quality of the proiles, and on larger workloads, context-insensitive proiles have a tendency to get more and more polluted. The experiments done by Grove et76 al. ] indicate [ that context-sensitive ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 49 receiver-type proiles signiicantly improve the performance on the larger workloads. In our solution, trail expansion is performed directly from the proiles, and as such works correctly. On the other hand, trail-grafting operation can attach more callees to a trail that would normally be callable for that callsite, but we rely on the inliner to prune those extra callees by considering only callees that were seen according to the receiver-type proile. Instead of designing the algorithm with ixed inlining parameter values for all workloads, 60] Cooper et al. [ proposed having program-speciic inlining decisions and heuristics. They described a system that adaptively tunes the inlining parameters for a speciic program by eiciently searching the parameter space, and have demonstrated that having program-speciic heuristics and parameters results in best overall inliner performance. Mùller and Veileborg 92][present a static analysis algorithm for optimizing JDK 8 Streams library, whose goal is to transform functional Stream expressions to manually-written loop equivalents. Their system works by identifyingStream the operation, and then performing ahead-of-time inlining of its functions. It exploits the observation that usually, the entire construction and execution Stream of apipeline is located in a single compilation unit, then inlines all of the methods into that compilation unit, and performs escape analyses and read-write eliminations to simplify Stream the operation into a simple loop. Mùller and Veileborg demonstrated on simple Stream programs that their algorithm produces the correct result. In our work, we strived to provide library-agnostic inlining improvements, and we based the inlining decisions on partially context-sensitive proiles ś we did not employ any library-speciic knowledge or static analyses. We believe that inlining and compilation scheduling can be further improved by integrating Mùller and Veileborg’s analysis into trail-expansion heuristics, but we leave that to future work. 8 CONCLUSION We presented a new algorithm that modiies the compilation schedule and the inlining decisions of an ahead-of- time optimizing compiler, with the aim of improving program performance without signiicantly increasing the size of the generated machine code. The algorithm utilizes the partially context-sensitive proiles, collected during oline proiling runs, to reconstruct call-tree fragments,trails calle , which d lead to hot parts of the program, and it uses these trails to inluence the inlining behavior. We formally presented the algorithm, and then described the implementation in GraalVM Native Image, state-of-the-art ahead-of-time compiler for the Java programming language. Evaluation on standard benchmark suites shows performance improvements in the range .5−of 40%, 2 with only 2 out of 16 benchmarks from the evaluation showing a small slowdown of less than 3%. The size of the generated code is increased by.80− 9%, and in 10 out of 16 benchmarks the increase is less than .5%. W 2 e conducted several additional experiments that show the breakdown of performance impacts, and the impact of the various parameters on performance. The algorithm can be implemented in most other optimizing compilers, and is generally useful for other programming languages and runtime environments. Our formalization separates the algorithm from the policies that it can be tuned with, which simpliies the exploration of better policies and heuristics. For example, we believe that augmenting the policies in the algorithm with interprocedural analyses can result in additional performance improvements, but we leave these investigations to future work. REFERENCES [1] 2015. Java Virtual Machine Speciication (Java SE 8 Edition): Chapter 4, the Class File Format. https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html. [2] 2018. GCC. https://gcc.gnu.org/. [3] 2018. GCC 8 Changes. https://gcc.gnu.org/gcc-8/changes.html. [4] 2018. GCC GENERIC. https://gcc.gnu.org/onlinedocs/gccint/GENERIC.html. ACM Trans. Program. Lang. Syst. 50 • Vukasovic and Prokopec [5] 2018. GCC GIMPLE. https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html. [6] 2018. GCC RTL. https://gcc.gnu.org/onlinedocs/gccint/RTL.html. [7] 2018. LLVM. https://llvm.org/. [8] 2018. LLVM Cost-Beneit Estimation Implementation at GitHub. https://github.com/llvm-mirror/llvm/blob/ 88ab6705571782fa664ecfa71b2f959a0daf2d78/lib/Analysis/InlineCost.cpp [9] 2018. LLVM Inliner Implementation at GitHub. https://github.com/llvm-mirror/llvm/blob/6f1d64eb934e12ca5e8dcd378f88d1e6b80e8c55/ lib/Transforms/IPO/Inliner.cpp [10] 2018. LLVM Inlining Parameters. https://llvm.org/doxygen/structllvm_1_1InlineParams.html. [11] 2018. LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html. [12] 2020. LLVM PGO Instrumentation: Example of CallSite-Aware Proiling. https://llvm.org/devmtg/2020-09/slides/PGO_Instrumentation. pdf. [13] 2021. Control-low-graph analysis in the Graal codebase. https://github.com/oracle/graal/blob/ 5708f348ad6a49511f0e3caf5314d72ca8c017e7/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/cfg/ ControlFlowGraph.java [14] 2021. Eclipse Test and Performance Tool Platform. http://archive.eclipse.org/archived_projects/tptp.tgz [15] 2021. HotSpot Runtime Overview. https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html. [16] 2021. LLVM proile-guided optimizations. https://clang.llvm.org/docs/UsersManual.html#proile-guided-optimization [17] 2021. Netbeans: Open source Java proiler. v6.7. https://web.archive.org/web/20210108060217/http://proiler.netbeans.org/. [18] 2021. OpenJDK 8 Optional Class. https://hg.openjdk.java.net/jdk8/jdk8/jdk/ile/687fd7c7986d/src/share/classes/java/ util/Op- tional.java#l120. [19] 2021. Parallel Garbage Collector. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html. [20] 2021. Proile-guided optimization (PGO) using GCC. https://developer.ibm.com/articles/gcc-proile-guided-optimization-to-accelerate- aix-applications/. [21] 2021. Serial Native Image Garbage Collector. https://www.graalvm.org/reference-manual/native-image/MemoryManagement/#serial- garbage-collector. [22] 2021. Speculative guard motion in GraalVM. https://github.com/oracle/graal/commit/6dcc8e4a57d23e7aaf85eeb8dae7ef501b59c18b#dif- 1e4c4d8dd65775bb5c116be6e862315ddebf9b0d84aec949a79af159ef899df4 [23] 2021. V8 Engine. https://v8.dev/. [24] 2022. PGO in GCC 11. https://documentation.suse.com/sbp/server-linux/single-html/SBP-GCC-11/index.html#sec-gcc11-pgo [25] 2022. Simplex Algorithm. https://en.wikipedia.org/wiki/Simplex. [26] 2023. Java Mission Control. https://www.oracle.com/java/technologies/jdk-mission-control.html. [27] 2023. LLVM PGO Context Sensitivity. https://reviews.llvm.org/D54175. [28] 2023. Valgrind. https://valgrind.org/. [29] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapeño Virtual Machine IBM Syst. . J. 39, 1 (jan 2000), 211ś238. https://doi.org/10.1147/sj.391.0211 [30] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting Hardware Performance Counters with Flow and Context Sensitive Proiling. SIGPLAN Not. 32, 5 (May 1997), 85ś96. https://doi.org/10.1145/258916.258924 [31] Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. 2004. Finding and removing performance bottlenecks in large systems. In European Conference on Object-Oriented Programming . Springer, 172ś196. [32] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2000. Adaptive Optimization in the Jalapeño JVM. SIGPLAN Not. 35, 10 (oct 2000), 47ś65. https://doi.org/10.1145/354222.353175 [33] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A Comparative Study of Static and Proile-based Heuristics for Inlining. ProInceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization (DYNAMO . ’00) ACM, New York, NY, USA, 52ś64. https://doi.org/10.1145/351397.351416 [34] Matthew Arnold, Michael Hind, and Barbara G. Ryder. 2002. Online Feedback-Directed Optimization Proof ceedings Java. Inof the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Seattle, Washington, USA (OOPSLA ) ’02). Association for Computing Machinery, New York, NY, USA, 111ś129. https://doi.org/10.1145/582419.582432 [35] Matthew Arnold and Barbara G. Ryder. 2001. A Framework for Reducing the Cost of Instrumented CodePr . In oceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation (Snowbird, Utah, USA(PLDI ) ’01). Association for Computing Machinery, New York, NY, USA, 168ś179. https://doi.org/10.1145/378795.378832 [36] Matthew Arnold and Barbara G. Ryder. 2001. A Framework for Reducing the Cost of Instrumented CoSIGPLAN de. Not. 36, 5 (may 2001), 168ś179. https://doi.org/10.1145/381694.378832 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 51 [37] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella Firmani. 2012. K-Calling SIGPLAN Context Not. Proiling. 47, 10 (oct 2012), 867ś878. https://doi.org/10.1145/2398857.2384679 [38] John Aycock. 2003. A Brief History of Just-in-Time ACM .Comput. Surv. 35, 2 (jun 2003), 97ś113. https://doi.org/10.1145/857076.857077 [39] Andrew Ayers, Richard Schooler, and Robert Gottlieb. 1997. Aggressive Inlining. Proceedings In of the ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation (Las Vegas, Nevada, USA) (PLDI ’97). ACM, New York, NY, USA, 134ś145. https://doi.org/10.1145/258915.258928 [40] Ivan Baev. 2015. Proile-based Indirect Call Promotion. https://llvm.org/devmtg/2015-10/#talk3. [41] J. Eugene Ball. 1979. Predicting the Efects of Optimization on a ProcedurePrBo ocedy edings . In of the 1979 SIGPLAN Symposium on Compiler Construction (Denver, Colorado, USA(SIGPLAN ) ’79). ACM, New York, NY, USA, 214ś220. https://doi.org/10.1145/800229. [42] Thomas Ball and James R. Larus. 1994. Optimally Proiling and TracingAPr CM ograms. Trans. Program. Lang. Syst. 16, 4 (jul 1994), 1319ś1360. https://doi.org/10.1145/183432.183527 [43] Rajkishore Barik and Vivek Sarkar. 2009. Interprocedural Load Elimination for Dynamic Optimization of Parallel Programs. In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation Techniques (P.AIEEE CT ’09) Computer Society, USA, 41ś52. https://doi.org/10.1109/PACT.2009.32 [44] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold.Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (oct 2017), 27 pages. https://doi.org/10.1145/3133876 [45] Yosi Ben Asher, Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, Roy Levin, and Yousef Shajrawi. Aggr2008. essive Function Inlining: Preventing Loop Blockings in the Instruction . Springer Cache Berlin Heidelberg, Berlin, Heidelberg, 384ś397. https: //doi.org/10.1007/978-3-540-77560-7_26 [46] Stephen M. Blackburn, Robin Garner, Chris Hofmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. SIGPLAN Not. 41, 10 (Oct. 2006), 169ś190. [47] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic Calling ProConte ceedings xt. Inof the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada)(OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 97ś112. https://doi.org/10.1145/1297027.1297035 [48] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic Calling SIGPLAN ConteNot. xt. 42, 10 (oct 2007), 97ś112. https: //doi.org/10.1145/1297105.1297035 [49] Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and Koen De Bosschere. 2007. Using Hpm-Sampling to Drive Dynamic Compilation. ProceInedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada)(OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 553ś568. https://doi.org/10.1145/1297027.1297068 [50] Kevin Casey, David Gregg, M. Anton Ertl, and Andrew Nisbet. 2003. Towards Superinstructions for Java InterprSoftwar eters. Ine and Compilers for Embedded Systems , Andreas Krall (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 329ś343. [51] Dhruva R. Chakrabarti and Shin-Ming Liu. 2006. Inline Analysis: Beyond Selection Heuristics. Proceedings of In the International Symposium on Code Generation and Optimization (CGO . IEEE ’06)Computer Society, Washington, DC, USA, 221ś232. https://doi.org/ 10.1109/CGO.2006.17 [52] Craig Chambers and David Ungar. 1991. Making Pure Object-Oriented Languages Practical. Confer Inence Proceedings on Object-Oriented Programming Systems, Languages, and Applications (Phoenix, Arizona, USA (OOPSLA ) ’91). Association for Computing Machinery, New York, NY, USA, 1ś15. https://doi.org/10.1145/117954.117955 [53] P. P. Chang and W.-W. Hwu. 1989. Inline Function Expansion for Compiling C Pr SIGPLAN ograms. Not. 24, 7 (June 1989), 246ś257. https://doi.org/10.1145/74818.74840 [54] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W. Hwu. 1992. Proile-guided Automatic Inline Expansion for C Programs. Softw. Pract. Exper.22, 5 (May 1992), 349ś369. https://doi.org/10.1002/spe.4380220502 [55] Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. 1991. Using Proile Information to Assist Classic Code Optimizations. Softw. Pract. Exper. 21, 12 (dec 1991), 1301ś1321. https://doi.org/10.1002/spe.4380211204 [56] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. 2010. Taming Hardware Event Samples for FDO Compilation. ProceIn edings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization (Toronto, Ontario, Canada)(CGO ’10). Association for Computing Machinery, New York, NY, USA, 42ś52. https://doi.org/10.1145/1772954.1772963 [57] Clif Click. 1995. Global Code Motion/Global Value Numb Proceering. edingsInof the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (La Jolla, California,(PLDI USA)’95). ACM, New York, NY, USA, 246ś257. https://doi.org/10. 1145/207110.207154 ACM Trans. Program. Lang. Syst. 52 • Vukasovic and Prokopec [58] Clif Click and Michael Paleczny. 1995. A Simple Graph-based Intermediate Representation. Papers fromIn the 1995 ACM SIGPLAN Workshop on Intermediate Representations (San Francisco, California, (IR USA ’95) ) . ACM, New York, NY, USA, 35ś49. https://doi.org/ 10.1145/202529.202534 [59] Keith D. Cooper, Mary W. Hall, and Linda Torczon. 1992. Unexpected Side Efects of Inline Substitution: AA Case CM Lett. Study. Program. Lang. Syst. 1, 1 (March 1992), 22ś32. https://doi.org/10.1145/130616.130619 [60] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. 2008. An Adaptive Strategy for Inline Substitution. Proceedings In of the Joint European Conferences on Theory and Practice of Software 17th International Conference on Compiler Construction (Budapest, Hungary) (CC’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 69ś84. http://dl.acm.org/citation.cfm?id=1788374.1788381 [61] George B Dantzig, Alex Orden, Philip Wolfe . 1955. , et al The generalized simplex method for minimizing a linear form under linear inequality restraints. Paciic J. Math. 5, 2 (1955), 183ś195. [62] Jefrey Dean and Craig Chambers. 1994. Towards Better Inlining Decisions Using Inlining ProceTerials. dings of In the 1994 ACM Conference on LISP and Functional Programming (Orlando, Florida, USA (LFP ) ’94). ACM, New York, NY, USA, 273ś282. https: //doi.org/10.1145/182409.182489 [63] David Detlefs and Ole Agesen. 1999. Inlining of Virtual Metho . Springer ds Berlin Heidelberg, Berlin, Heidelberg, 258ś277. https: //doi.org/10.1007/3-540-48743-3_12 [64] M. Dmitriev. 2004. Selective proiling of Java applications using dynamic bytecode instrumentation. IEEE International In Symposium on - ISPASS Performance Analysis of Systems and Software, 2004 . 141ś150. https://doi.org/10.1109/ISPASS.2004.1291366 [65] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Speculation without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler Pr.oIn ceedings of the 2014 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and To(ols Cracow, Poland)(PPPJ ’14). Association for Computing Machinery, New York, NY, USA, 187ś193. https://doi.org/10.1145/2647508.2647521 [66] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler Proceedings . Inof the 7th ACM Workshop on Virtual Machines and Intermediate Languages(Indianapolis, Indiana, USA (VMIL ) ’13). Association for Computing Machinery, New York, NY, USA, 1ś10. https://doi.org/10.1145/2542142.2542143 [67] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler Proceedings . Inof the 7th ACM Workshop on Virtual Machines and Intermediate Languages(Indianapolis, Indiana, USA (VMIL ) ’13). ACM, New York, NY, USA, 1ś10. https://doi.org/10.1145/2542142. [68] Evelyn Duesterwald and Vasanth Bala. 2000. Software Proiling for Hot Path Prediction: Less Pr isoce Mor edings e. In of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (Cambridge, Massachusetts, USA) (ASPLOS IX). Association for Computing Machinery, New York, NY, USA, 202ś211. https://doi.org/10.1145/378993.379241 [69] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter Mössenböck. 2016. Trace-Based Register Allocation in a JIT Compiler. Pr Inoceedings of the 13th International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools (Lugano, Switzerland) (PPPJ ’16). Association for Computing Machinery, New York, NY, USA, Article 14, 11 pages. https://doi.org/10.1145/2972206.2972211 [70] Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck. 2017. Trace Register Allocation Policies: Compile-time vs. Performance Trade-ofs. InProceedings of the 14th International Conference on Managed Languages and Runtimes (Prague, Czech Republic) (ManLang 2017). ACM, New York, NY, USA, 92ś104. https://doi.org/10.1145/3132190.3132209 [71] Stephen J. Fink and Feng Qian. 2003. Design, Implementation and Evaluation of Adaptive Recompilation with on-Stack Replacement. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization (San Francisco, California, (CGO USA) ’03). IEEE Computer Society, USA, 241ś252. [72] Olivier Flückiger, Andreas Wälchli, Sebastián Krynski, and Jan Vitek. 2020. Sampling Optimized Code for ProTce yp edings e Feedback. In of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (Virtual, USA (DLS ) 2020). Association for Computing Machinery, New York, NY, USA, 99ś111. https://doi.org/10.1145/3426422.3426984 [73] Edward Fredkin. 1960. Trie MemorCommun. y. ACM 3, 9 (sep 1960), 490ś499. https://doi.org/10.1145/367390.367400 [74] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. Proceedings In of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (Montreal, Quebec, Canada) (OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 57ś76. https://doi.org/10.1145/1297027.1297033 [75] James Gosling. 1995. Java Intermediate Bytecodes: ACM SIGPLAN Workshop on Intermediate Representations (IR’95). SIGPLAN Not. 30, 3 (March 1995), 111ś118. https://doi.org/10.1145/202530.202541 [76] David Grove, Jefrey Dean, Charles Garrett, and Craig Chambers. 1995. Proile-Guided Receiver Class Prediction. Proceedings In of the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (Austin, Texas, USA(OOPSLA ) ’95). Association for Computing Machinery, New York, NY, USA, 108ś123. https://doi.org/10.1145/217838.217848 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 53 [77] Martin Hirzel and Trishul Chilimbi. 2001. Bursty tracing: A framework for low-overhead temporal 4th Apr CM oiling. WorkshopInon Feedback-Directed and Dynamic Optimization (FDDO-4) . Citeseer, 117ś126. [78] Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-dispatched Calls with Run-time Pr Typ oceeeFe dings edback. of In the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation (Orlando, Florida, USA (PLDI ) ’94). ACM, New York, NY, USA, 326ś336. https://doi.org/10.1145/178243.178478 [79] Jan Hubicka. 2005. Proile driven optimisations inGCC GCC. Summit In Proceedings . Citeseer, 107ś124. [80] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. ProceeIn dings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Atlanta, Georgia, USA (OOPSLA ) ’97). Association for Computing Machinery, New York, NY, USA, 318ś326. https: //doi.org/10.1145/263698.263754 [81] Suresh Jagannathan and Andrew Wright. 1996. Flow-directed Inlining. ProceeIn dings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia, Pennsylvania, (PLDI USA’96) ) . ACM, New York, NY, USA, 193ś205. https://doi.org/10.1145/231379.231417 [82] Thomas Kistler and Michael Franz. 2003. Continuous Program Optimization: A Case ACMStudy Trans. . Program. Lang. Syst. 25, 4 (jul 2003), 500ś548. https://doi.org/10.1145/778559.778562 [83] Donald E. Knuth. 1971. An Empirical Study of FORTRAN Programs. Softw. Pract. Exp.1, 2 (1971), 105ś133. https://doi.org/10.1002/spe. [84] Thomas Kotzmann and Hanspeter Mossenbock. 2007. Run-Time Support for Optimizations Based on Escape Analysis. Proceedings In of the International Symposium on Code Generation and Optimization (CGO . IEEE ’07) Computer Society, Washington, DC, USA, 49ś60. https://doi.org/10.1109/CGO.2007.34 [85] C. Krintz. 2003. Coupling on-line and of-line proile information to improve program pInternational erformance. In Symposium on Code Generation and Optimization, 2003. CGO 2003. 69ś78. https://doi.org/10.1109/CGO.2003.1191534 [86] Aditya Kumar. 2019. Hot Cold Splitting Optimization Pass In LLVM. https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech8. [87] Anatole Le, Ondřej Lhoták, and Laurie Hendren. 2005. Using Inter-Procedural Side-Efect Information in JIT Optimizations. Compiler In Construction , Rastislav Bodik (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 287ś304. [88] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-based Duplication Simulation (DBDS): Code Duplication to Enable Compiler Optimizations. Proceedings of the In2018 International Symposium on Code Generation and Optimization (Vienna, Austria) (CGO 2018). ACM, New York, NY, USA, 126ś137. https://doi.org/10.1145/3168811 [89] Roy Levin, Ilan Newman, and Gadi Haber. 2008. Complementing Missing and Inaccurate Proiling Using a Minimum Cost Circulation Algorithm. Pr Inoceedings of the 3rd International Conference on High Performance Embedded Architectures and Compilers (Göteborg, Sweden) (HiPEAC’08) . Springer-Verlag, Berlin, Heidelberg, 291ś304. [90] P. F. Sweeney M. Arnold. 2000.Approximating the calling context tree via sampling . Technical Report. [91] Scott Milton and Heinrich (Heinz) Schmidt. 1994. Dynamic Dispatch in Object-Oriented Languages. (03 1994). [92] Anders Mùller and Oskar Haarklou Veileborg. 2020. Eliminating Abstraction Overhead of Java Stream Pipelines Using Ahead-of-Time Program Optimization. Proc. ACM Program. Lang. 4, OOPSLA, Article 168 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428236 [93] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. 2010. Evaluating the accuracy of Java prAoilers. CM Sigplan Notices 45, 6 (2010), 187ś197. [94] Diego Novillo. 2014. SamplePGO: The Power of Proile Guided Optimizations without the Usability Proceedings Burden. of the In2014 LLVM Compiler Infrastructure in HPC (New Orleans, Louisiana) (LLVM-HPC ’14). IEEE Press, 22ś28. [95] Michael Paleczny, Christopher Vick, and Clif Click. 2001. The Java HotSpot Server Compiler Proceedings . Inof the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume (Monter 1 ey, California) (JVM’01). USENIX Association, Berkeley, CA, USA, 1ś1. http://dl.acm.org/citation.cfm?id=1267847.1267848 [96] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler J. Funct. Inliner Program. . 12, 5 (July 2002), 393ś434. https://doi.org/10.1017/S0956796802004331 [97] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An Optimization-driven Incremental Inline Substitution Algorithm for Just-in-time Compilers. Proceedings In of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (Washington, DC, USA(CGO ) 2019). IEEE Press, Piscataway, NJ, USA, 164ś179. http://dl.acm.org/citation.cfm?id= 3314872.3314893 [98] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. 2017. Making Collection Operations Optimal with Aggressive JIT Compilation. ProceInedings of the 8th ACM SIGPLAN International Symposium on Scala (Vancouver, BC, Canada) (SCALA 2017). ACM, New York, NY, USA, 29ś40. https://doi.org/10.1145/3136000.3136002 ACM Trans. Program. Lang. Syst. 54 • Vukasovic and Prokopec [99] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: benchmarking suite for parallel applications on the JVM.. In PLDI, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 31ś47. http://dblp.uni-trier.de/db/conf/pldi/pldi2019. html#ProkopecRLD0SBZ19 [100] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpanyapong, and Weng-Fai Wong. 2004. Compiler Orchestrated Prefetching via Speculation and Predication. SIGPLAN Not. 39, 11 (Oct. 2004), 189ś198. https://doi.org/10.1145/1037187.1024416 [101] Steven P Reiss and Manos Renieris. 2001. Encoding program executions. ProceInedings of the 23rd International Conference on Software Engineering. ICSE 2001 . IEEE, 221ś230. [102] Alan D Samples. 1991.Proile-driven compilation . Technical Report. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES. [103] Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and Mira Mezini. 2011. Complete and Platform-Independent Calling Context Proiling for the Java VirtualEle Machine ctronic.Notes in Theoretical Computer Science 279, 1 (2011), 61ś74. https: //doi.org/10.1016/j.entcs.2011.11.006 Proceedings of the Bytecode 2011 workshop, the Sixth Workshop on Bytecode Semantics, Veriication, Analysis and Transformation. [104] Robert W. Scheiler. 1977. An Analysis of Inline Substitution for a Structured ProgrammingCommun. Language A.CM 20, 9 (Sept. 1977), 647ś654. https://doi.org/10.1145/359810.359830 [105] Manuel Serrano. 1997.Inline expansion: When and how? Springer Berlin Heidelberg, Berlin, Heidelberg, 143ś157. https://doi.org/10. 1007/BFb0033842 [106] Mauricio Serrano and Xiaotong Zhuang. 2009. Building Approximate Calling Context from Partial 2009 Call International Traces. In Symposium on Code Generation and Optimization . 221ś230. https://doi.org/10.1109/CGO.2009.12 [107] Andreas Sewe, Jannik Jochem, and Mira Mezini. 2011. Next in Line, Please!: Exploiting the Indirect Beneits of Inlining by Accurately Predicting Further Inlining. ProceInedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 (Portland, Oregon, USA(SPLASH ) ’11 Workshops). ACM, New York, NY, USA, 317ś328. https://doi.org/10.1145/ 2095050.2095102 [108] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine. OOPSLA In . 657ś676. [109] Denys Shabalin. 2020. Just-in-time performance without warm-up. (2020), 165. https://doi.org/10.5075/epl-thesis-9768 [110] Denys Shabalin and Martin Odersky. 2018. Interlow: Interprocedural Flow-Sensitive Type Inference and Method Duplication. In Proceedings of the 9th ACM SIGPLAN International Symposium on Scala (St. Louis, MO, USA(Scala ) 2018). Association for Computing Machinery, New York, NY, USA, 61ś71. https://doi.org/10.1145/3241653.3241660 [111] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and Thomas Würthinger. 2015. Snippets: Taking the High Road to a Low Level. ACM Trans. Archit. Code Optim. 12, 2, Article 20 (June 2015), 25 pages. https://doi.org/10.1145/2764907 [112] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (Orlando, FL, USA(CGO ) ’14). ACM, New York, NY, USA, Article 165, 10 pages. https://doi.org/10.1145/2544137.2544157 [113] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael Franz. 2014. Comparing Points-to Static Analysis with Runtime Recorded Proiling Data. PrIn oceedings of the 2014 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and To(ols Cracow, Poland)(PPPJ ’14). Association for Computing Machinery, New York, NY, USA, 157ś168. https://doi.org/10.1145/2647508.2647524 [114] Edwin Steiner, Andreas Krall, and Christian Thalinger. 2007. Adaptive Inlining and On-stack Replacement in the CACAO Virtual Machine. InProceedings of the 5th International Symposium on Principles and Practice of Programming (Lisb inoa, Java Portugal) (PPPJ ’07). ACM, New York, NY, USA, 221ś226. https://doi.org/10.1145/1294325.1294356 [115] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2002. An Empirical Study of Method Inlining for a Java Just-in-Time Compiler. In Proceedings of the 2nd Java Virtual Machine Research and Technology Symposium . USENIX Association, USA, 91ś104. [116] Omri Traub, Stuart Schechter, and Michael D Smith. 2000. Ephemeral instrumentation for lightweight program Unpublishe proiling. d technical report, Department of Electrical Engineering and Computer Science, Harvard University, Cambridge, Massachusetts (2000). [117] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of Proile Data on Code SIGPLAN Quality Not. . 52, 5 (jun 2017), 1ś10. https://doi.org/10.1145/3140582.3081037 [118] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2 (April 1991), 181ś210. https://doi.org/10.1145/103135.103136 [119] John Whaley. 2000. A Portable Sampling-Based Proiler for Java Virtual Machines. Proceedings In of the ACM 2000 Conference on Java Grande (San Francisco, California, (JA USA VA ) ’00). Association for Computing Machinery, New York, NY, USA, 78ś87. https://doi.org/10.1145/337449.337483 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Code • 55 [120] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019. Initialize Once, Start Fast: Application InitializationPratoc.Build ACM PrTime ogram.. Lang. 3, OOPSLA, Article 184 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360610 [121] Thomas Wuerthinger, Christian Wimmer, and Hanspeter Moessenboeck. 2007. Visualization of Program Dependence Graphs. [122] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017. Practical Partial Evaluation for High-performance Dynamic LanguagePrRuntimes. oceedings of In the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 662ś676. https://doi.org/10.1145/3062341.3062381 [123] Graham Yiu. 2017. Partial Inlining with multi-region outlining based on PGO information. https://reviews.llvm.org/D38190 LLVM Pull Request. [124] Peng Zhao and José Nelson Amaral. 2004. To Inline or Not to Inline? Enhanced Inlining Decisions . Springer Berlin Heidelberg, Berlin, Heidelberg, 405ś419. https://doi.org/10.1007/978-3-540-24644-2_26 ACM Trans. Program. Lang. Syst. 56 • Vukasovic and Prokopec A COMPILATION UNIT EXAMPLE Having demonstrated the algorithm on a simple example, we illustrate its execution on mnemonics the benchmark, from the Renaissance benchmarking suite 99].[Our algo- rithm identiied 12 hot methods for compilation, one of them beingorg.renaissance.jdk.streams.MnemonicsCoder- WithStream.encode. In this section, we show the compila- tion of the encode method, and how the trail is applied to the inlining tree. Figure 14 shows a fragment of the inlining tree of the encode method, created by the Graal compiler’s inlining algorithm, and visualized with the Ideal Graph Visualizer (IGV) tool121 [ ]. Several nodes were zoomed in and high- lighted, to make their captions more readable. The cap- tion of each node consists of the node’s unique ID, fol- lowed by a string Sg and the node-count of the respective method, name of the method, and the exploration prior- ity of the inlining tree node (in square brackets). The root node corresponds to encode, and its direct child nodes corre- spond to a set of calleesencode of . One such callee method isReferencePipeline.collect, which has children of its own, for example, the methoAbstractPipeline. d evaluate from the igure. Further down, one child of the evaluate method is the node for theTerminalOp. evaluateSequential method. These nodes represent the hottest parts of the trail, and lead to the method that contains the main loop of the JDK Stream operation. Fig. 14. Inlining Tree Fragment for the encode Method We next consider the trail that corresponds to the hot From themnemonics Benchmark compilation unit encode. Figure 15 contains the nodes of the trail that directly correspond to the highlighted inlining tree nodes in Figure 14. The highlighted nodes in Figure 15 show some of the relevant metrics such as the attenuation facto�r , breadcrumb hotness �, total subtree hotness� and the size� expressed as the IR node count. The trail contains all the highlighted nodes from the inlining tree, in the same caller-callee order ś exploration priority is boosted for all the inlining-tree nodes that can be mapped to the trail nodes. In Figure 14, the exploration priority of these on-trailž ł no � = des 0.29384, is which is noticeably higher than the surrounding nodes, whose priority is in .026 theto0 0.049 range. This larger value is a consequence of the modiied expansion priority � from Equation 21 ś it forces the inliner to prioritize the exploration along the corresponding call chain, and to explore the tree deeper around this region. Importantly, the exploration of other parts of the inlining tree still takes placep,enalty sincefunction the from Equation 20 reduces the exploration of subtrees that become too large. B CASE STUDY: INLINING SCHEDULE IN THE MNEMONICS BENCHMARK In this section, we analyze the impact of the proposed algorithm mnemonics on the benchmark. The aim is to demonstrate how our algorithm works onreal-life a example from the evaluation benchmark. Figures 16 and 17 ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de57 Fig. 15. Part Of a Trail Forencode Method Frommnemonics Benchmark contain the most important parts of the lame graph for the AOT-compile mnemonics d benchmark, with and without the proposed inlining algorithm, respectively. We use this example to illustrate the efect of two speciic features of the proposed inliner: (1) we identify the compilation units that are hot and boost their compilation budget, and (2) we change the compilation order, which leads to a diferent set of compilation units. In both cases, we show how these features afect the benchmark emphasize the relevant frames in the call stacks. To see the efect of increasing the inlining budget in hot compilation units, consider the call stack on the left in Figure 16, in which the metho ArraySpliterator.forEachRemaining d is a hot compilation unit. The new inlining algorithm performs more aggressive inlining in this compilation unit ś all the callees are inlined into forEachRemaining, except for thearraycopy snippet, as explained in Section 5.7. On the other hand, without the proposed algorithm, several callee methoAbstractPipeline.copyInto ds, i.e. (as well as their callees) remain separate compilation units in the lame graph, as shown in Figure 17 in the call stack on the left. ACM Trans. Program. Lang. Syst. 58 • Vukasovic and Prokopec Fig. 16. Part Of a Flame Graph Formnemonics Benchmark With the Proposed Inlining Algorithm Fig. 17. Part Of a Flame Graph Formnemonics Benchmark With the Original Native Image Inliner To see the efect of modifying the compilation order, note that the set of compilation units difers between the lame graphs in Figures 16 and 17. In the version with the proposed inlining and compilation-scheduling algorithm (Figure 16), ReferencePipeline.collect the compilation unit in the right call stack has a single remaining callee ś metho ReduceOp.evaluateSequential d . In the standard version, this evaluateSequential is not a standalone compilation unit, and is insteadReferencePipeline.collect inlined in method, which then runs out of compilation budget before inlining HashMap$EntrySpliterator.forEachRemaining. ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de59 C INLINER CHALLENGES FROM A USER PERSPECTIVE In this section, we give several classes of code patterns that pose particular challenge to inlining algorithms. Our emphasis is on object-oriented and functional programming languages. Our goal is to illustrate some of the inlining problems from a programmer’s perspective, and provide possible mitigations that a programmer can apply (when the inlining algorithm is not suiciently sophisticated to apply them automatically). The suggested mitigations are not exhaustive, and the examples are not comprehensive ś they are based on our own experience and performance analyses of individual programs. Frequency proiles are polluted. Since inlining decisions are typically heavily guided by execution frequency proiles, a common problem is that the frequency information of a callsite is imprecise. Consider a frequency proile on a control-low construct such as a loop. If the subroutine that the loop belongs to is called from many diferent callsites, then the frequency of the loop may vary for the diferent callers, but a context-insensitive proile will only report the average frequency. In such cases, we consider the frequency proile polluted. If the proile pollution results in an underestimate of the call frequency, a performance critical call might not get inlined. Example: Listing 6 shows an implementation of the quicksort algorithm in the Scala program- def sort (xs: Array [Int], lo: Int , hi: Int) { ming language. The implementation consists of if (lo >= hi || lo < 0) return val p = part (xs , lo , hi) two functions sort and part. The part function sort (xs , lo , p - 1) partitions the subsequence using the last element sort (xs , p + 1, hi) as the pivot, and places elements smaller than def part (xs: Array [Int], lo: Int , hi: Int) = { the pivot to the left of the subsequence, and the var pIndex = lo - 1 polluted frequency proile larger elements to the right of the subsequence. var j = lo The sort function partitions its subsequence by while (j <= hi - 1) { if (xs(j) <= xs(hi)) { afected inlining decision invoking part, and then recursively invokes sort pIndex += 1 on the partitions. swap (xs , pIndex , j) The while loop in the part function is invoked j += 1 many times recursively, and for progressively shorter and shorter subsequences. Since most of swap (xs , pIndex + 1, hi) the calls part to are near the leaves of the recur- return pIndex + 1 sion tree, the averaged loop frequency is heavily Listing 6. uicksort Algorithm biased towards those shorter loops. An inliner may therefore decide not to inline swap thecall inside the loop body, which considerably changes the performance of the compiled code. Mitigation: The programmer can artiicially introduce context-sensitivity into the code by replicating the code parts depending on the context in which they execute. In the concrete example in Listing 6, the programmer can repeat the while loop inside two branches, separated by a condition such hi -aslo < THRESHOLD. This ensures that the two copies of the loop get attributed with separate frequency proiles, which subsequently biases the inliner to inline swapthe call at least in the hotter loop. Alternatively, the programmer can use metaprogramming facilities to declar part e the function as a C macro, C++ template, or a Scala macro, and then instantiate its body twice, calling a diferent instantiation depending the diference hi and betw loe.en Receiver-type proiles are too polluted.To be able to inline indirect calls, an inliner speculates on what the target subroutine is ś it chooses several likely targets, and emits code that checks what the target address (or receiver type) is, and then inlines that implementation into the branch in which the check passes. By doing so, the inliner bets that this branch will be entered in most cases. The success of this technique depends on the quality of the call target proile ś if the proile is too polluted, the speculations done in the compiled code are rarely correct. ACM Trans. Program. Lang. Syst. 60 • Vukasovic and Prokopec Example: Each collection in the Scala standard library has def foreach [U](f: A => U) { a foreach function that applies a user-speciied function to var i = 0 while (i < table . length ) { each element of the collection. Listing 7 sho foreach ws the val entry = table (i) function of the HashSet collection, which traverses an array if ( entry ne null ) f( elem ( entry )) of entries, and applies the user function f to each non-empty i += 1 array entry. A call to function f is indirect, because the con- polluted receiver-type proile crete implementation is unknown ś an inliner must therefore Listing 7. ScalaHashSet#foreach rely on the receiver-type proile to devirtualize the call to f. Sinceforeach is one of the most commonly used collec- tion operations in Scala, the receiver-type proile is as a rule polluted in all but the simplest programs. Mitigation: The programmer must reduce the amount of proile pollution ś one approach is to use metapro- gramming when designing the library so that common functions (such foreach as the ) are implemented as Scala macros or C++ templates, which reinstantiate the code at each callsite. If the foreach callis to itself indirect, users can manually insert a receiver-type-check for the types they expect to be common at a particular callsite, and cast the receiver down to a concrete type before calling a function foreach such as . In the example in Listing 7, the user can also use an iterator andwhile a loop instead of the foreach, as that either eliminates the indirect call to the function f, or creates a separate callsite for proiling, thereby reducing proile pollution. Nested polymorphic inlining spends too much budget. The aforementioned proile-based def foldLeft [B](z: B)(op: (B, A) => B): B = { devirtualization technique gets rid of indirect calls var result = z this .foreach(x => result = op(result , x)) by inlining several likely targets, and dispatch- result ing between them based on a receiver-type-check. code-bloating nested indirect calls The number of likely targets is small (usually up Listing 8. ScalaTraversableOnce#foldLeft to three), but this still results in a code-bloat as the polymorphic inlining gets deeper. Since each level in the inlining tree speculates on more than a single implementation, each of which can contain nested indirect calls, the number of inlined combinations grows exponentially, even though only some paths in the inlining tree are actually executed at runtime. Most inliners are bounded by the size of the compilation unit, so the code-bloat forces them to stop before attempting to inline other parts of the call tree. Code-bloat also afects other size-driven optimizations. Example: Listing 8 shows the implementationfoldLeft of the operation for the TraversableOnce interface, which covers collections deined solely in terms foreach of their function. The foldLeft folds over the collection elements by starting from a zero element z, and successively applying the operator op to the folded value and the collection element.foldLeft The calls foreach, passing it a function that calls op and updates the folded value result. Since both theforeach and the op call are indirect (the former because the typ this e ofvaries, and the latter because the user-speciie opd parameter varies), several concrete targets are inline foreach d for , and then several concrete targets for op are recursively inlined for each of the speforeach culated targets. Mitigation: If the language supports metaprogramming, the programmer may again resort to macros to force instantiation. In the example in Listing 8, byfoldLeft deiningas a macro or a template makes the receiver of foreach and the op target visible, so the compiler can convert those indirect calls to direct calls. Even if those receivers are not visible, instantiating foldLeft the code at the callsite results in a new proiling point, which reduces pollution. Low frequency callee code can optimize code of a high frequency calleeThe . bias that an inliner typically has towards high-frequency calls can spend the inlining budget before low-frequency calls are inlined. Some of ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de61 the low-frequency calls may introduce additional type information that can enable subsequent optimizations, so not inlining them results in suboptimal performance. Example: The Scalaaggregate function, shown in Listing ??, is a collection operation that generalizes foldLeft, and can have a parallel implementation. By default, it is implemented foldLeft in terms of in the TraversableOnce interface. The signature of aggregate takes the zero-elementz as a by-name argument, meaning that the argument is not immediately evaluated at the callsite ś a function that represents the callsite-side expression is passed instead. In themain function, the aggregate function is used to return the sum of the lengths of all arguments. Here, the zero-element 0 is not immediately computed, but is instead passed as a function that returns 0. Consequently, even if the foldLeft from Listing 8 is inlined into the compilation aggregate,of and simpliies to a simple while loop, the call to the function representing the by-name parameter z might not get inlined. Due to the use of erasure to implement genericity in Scala, if the by-name z isparameter not inlined, it is returned as a boxed value of typ java.lang.Integer e . The boxed value subsequently causes boxing and unboxing in the while loop, which hurts performance at the place where most of the time is spent. Wzere the call inlined, the compiler could more easily apply optimizations such as escape analysis. Mitigation: The library designers should avoid by-name arguments (i.e =>B. functions, the which lazily evaluate the argument when referenced), and use by-value arguments instead. In the example in Listing ??, usingB instead of=>B might have arguably been a better choice. More generally, if a low-frequency call is direct, the user can force the inlining by using @inline an annotation when available. Without low-sensitive analyses in the inliner, there is not much else that a user can do. Low frequency callee has hot code. Another common problem for call-frequency-based inliners is to inline calls that happen infrequently, but which themselves contain a lot of hot code (for example, a high-frequency loop). If the callee receives parameters from the caller that devirtualize callsites in the callee, or enable escape analysis of the parameters allocated at the callsite, then not inlining such a low-frequency callee is typically detrimental to performance. Example: The foldLeft function from Listing 8 manifests this problem foreach ś itsfunction is called only once from its body, but the foreach itself contains a high frequency loop whose body has several indirect calls that involve the parameters passed at its callsite. Mitigation: For direct calls, the programmer may resort to metaprogramming, or to@inline the compiler hint, when available. In the example in Listing 8, it is beneicial for the library designer foldLefttoin override heavily used collections, so that it contains whilea loop instead offoreach a call. Another way to mitigate indirect calls is to speculate on the type this of in the programming language itself ś the frontend compiler for a programming language that supports metaprogramming may speculatively instantiate foreach all implementations that are macros (to aid the inliner of the optimizing compiler of the runtime environment). D ALGORITHM DETAILS This section contains the details of the policies used in the algorithm to detect the most frequently executed code and to approximate longer partially-context-sensitive proiles based on the input proiles. We also explain in details the classiication of the callees as either hot or cold. These algorithm components are introduced in Sections 3.4 and 3.6. ACM Trans. Program. Lang. Syst. 62 • Vukasovic and Prokopec D.1 Hot-Code-Detection Policies Details This section contains the deinitions and the details of the key procedures for the hot-code detection from Algorithm 2, based on which we deine hot-co a de-detection policy . Equation 30 formally describes creating a set of initial trails fr Π.om Wethe deine proile a constant� ∈ [0, 1], and mandate that the proile’s contribution ℎ to the overall hotness excee�ds. InitialTrails(Π) ≡ {(�, �,�) : (⟨ℓ , ... , ℓ ⟩, ℎ ) ∈ Π∧ Í > �} 1 � � (30) (�,ℎ)∈Π where � = {� , ... , � } � = {�  � , ... , �  � } � = {� } ℓ ℓ ,...,ℓ ℓ ℓ ,ℓ ℓ ,...,ℓ ℓ ,...,ℓ ℓ 1 1 � 1 1 2 1 �−1 1 � 1 DetectionDone becomes true when all the trails �frend om up in the inal set �, as per Equation 31. DetectionDone(�, �) ≡ � \ � = ∅ (31) This termination condition therefore assumes (1) � gr that ows monotonically, and (2) that � eventually stops growing. CallingContexts procedure. represents a set of all the calling contexts from the proile entries, which can be used for extending a trail, and is deined in Equation 32. We identify Π|the ofsubset proile entriesΠin that refer to callsite executions speciically. For a sp�e,ciic the settrail callerProilesis determined as those entries fromΠ| that end with a subroutine � , and call root(�) in the call-graph � (below�,  � ∈ � where � = (�, �) � � 1 2 is short for �  � ∈ �). 1 2 callerProiles((�, �,�), Π, �) ≡ {(⟨� , ... , � ⟩, ℎ) : (⟨� , ... , � ⟩, ℎ) ∈ Π| ∧ �  ����(�, �) ∈ � } 1 � 1 � � � (32) CallingContexts(�,Π, �) ≡ {� : (�, ℎ) ∈ callerProiles(�,Π, �)} To estimate the portion of the trail � � hotness for a particular extension �⊙ � the CallingContext procedure computes an attenuation factor � (�) ∈ [0, 1] of each context� = ⟨� , ... , � ⟩. Below, the numerator is the hotness � 1 � of one particular calling conte � = ⟨�xt, ... , � ⟩ that calls root(�), and the denominator is the hotness sum of all 1 � the calling conte�xts that call root(�). � ,...,� 1 � � (�) ≡ Í where (⟨� , ... , � ⟩, ℎ ) ∈ Π (33) � ,...,� 1 � � 1 � (�,ℎ)∈callerProiles(�,Π,� ) � (� ) = 1 �(� ) = � (� )·(�(� )+ �(� )) s s s ,s s s 0 0 0 1 0 0 s s s 0 5 7 s s s 1 6 8 s h h h �(� ) = � (� )·(�(� )+�(� )) 1 2 3 s ,s s ,s s ,s s ,s ,s 0 1 0 1 0 1 0 1 2 �(� ) = h � (� )=1 s ,s 1 s s 0 1 2 s 0 2 s s s 3 4 � (� ) = s ,s ,s s s 3 4 0 1 2 h +h +h 1 2 3 We will use the same example igure from Section 3.4 (presented above) to illustrate the deinitions of the attenutation factor, trail hotness, and breadcrumb hotness. Trail � ← � → � (on the left) has the calling conte � → xts� , � → � and � → � , with hotnessℎ , ℎ and 3 2 4 0 1 5 6 7 8 1 2 ℎ , respectively. The attenuation factors of these diferent calling contexts are computed using the Equation 33. To compute the hotness of the trail, we need to sum together the hotness of the breadcrumbs, but weigh them using the attenuation factors. We deine three functions to serve this purpose: graft-point attenuation �, which records the attenuation factor when the trail gets extended; breadcrumb hotness �, which records the hotness of ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de63 the individual node; and the trail hotness �. To illustrate this, we use the example from the preceding igure. In the igure, the root attenuation �(� ) of the trail � ← � → � is 1, but after the trail is extended, the attenuation � 3 2 4 of that node becomes /ℎ +ℎ +ℎ . Next, the hotness � of an individual breadcrumb � is inherited from the 1 2 3 � ,� 0 1 calling context hotness ℎ . The hotness � of the trail is computed recursively, by summing the hotness of the children and the current node, and multiplying it with the attenuation �. Trail hotness.The trail hotnessis a function � : �(�) → R that maps a trail to a non-negative real value. For its deinition we use the auxiliary functions � and �. Deinition D.1. Graft-point attenuation of a trail � is a function � : � → [0, 1] that maps each node to a real value between 0 and 1. For any trail � = (�, �,�), � (�) = 1 for all the nodes that are not graft-points, � ∉ i.e �.. For graft-points � ∈ �, the algorithm incrementally constructs � when the trail � is created. The rules are as follows: • For all the trails that are initially created from some pr(⟨oile ℓ , ... , ℓentr ⟩, ℎy) ∈ Π (see Equation 30), the 1 � algorithm sets � (� ) = 1. That is, attenuation is 1 on new trails. � ℓ • For every trail � = (�, �,�) that is the result of grafting � � (see Equation 9), where� = (� , � ,� ) � � � � � ,...,� 1 � and � = (� , � ,� ): if � ∈ � , then � (�) = � (�); otherwise if � ∈ � , then � (� ) = � � � � � � � ,� ,...,� � � � ,...,� ,� ,...,� � 2 � 1 � 2 � � (� ). That is, attenuation is inherited from the inputs. � � ,� ,...,� � 2 � • For every trail � = (�, �,�) that is the result of extension � ⊙ �, where � = (� , � ,� ) and � = ⟨ℓ , ... , ℓ ⟩, � � � 1 � the algorithm computes an attenuation factor � (�) for each context� (as deined in Equation 33), when the context � created in theCallingContexts procedure in line 6 of Algorithm 2. Then, for the root graft-point � (����(�, �)) = 1; for the previous root � (� ) = � ; and for all other � ∈ � , � � ℓ ,...,ℓ ,sub(����(� ,� )) � � ,...,� � 1 � � � 1 � � (� ) = � (� ) That is, the� of the graft-point that was previously the root is set to the � ℓ ,...,ℓ ,� ,...,� � � ,...,� � 1 � 1 � 1 � value� , and the attenuation of the remaining graft-points is kept unchanged. Deinition D.2. Breadcrumb hotness of a trail � = (�, �,�) is a function � : � → N , which maps each node to � 0 its estimated count. The algorithm constructs � when � is created, as follows: • For all the trails that are created from a proile(⟨ℓentr , ...y, ℓ ⟩, ℎ) ∈ Π (see Equation 30), the hotness of 1 � the deepest node is� (� ) = ℎ, and � (�) = 0 for all other nodes. � ℓ ,...,ℓ � 1 � • For every trail � = (�, �,�) that is obtained by grafting � � (see Equation 9), where� = (� , � ,� ) � � � � � ,...,� and � = (� , � ,� ): if � ∈ � and � ∈ � , then � (� ) = � (� ) + � � � � ,� ,...,� � � ,...,� ,� ,...,� � � � ,...,� ,� ,...,� � � ,� ,...,� � 2 � 1 � 2 � 1 � 2 � � 2 � � (� ); if � ∈ � and � ∉ � , then � (� ) = � (� ); other- � � ,...,� ,� ,...,� � ,� ,...,� � � ,...,� ,� ,...,� � � � ,...,� ,� ,...,� � � ,� ,...,� 1 � 2 � � 2 � 1 � 2 � 1 � 2 � � 2 � wise� (�) = � (�). I.e., the hotness of the grafted nodes is added together where possible, and inherited � � otherwise. • For every trail � = (�, �,�) that is produced by the extension �⊙�, where � = (� , � ,� ) and � = ⟨ℓ , ... , ℓ ⟩: � � � 1 � nodes that originate from � inherit the hotness, i.e � (.� ) = � (� ). The newly created nodes � ℓ ,...,ℓ ,� ,...,� � � ,...,� 1 � 1 � 1 � � (� ) have their hotness set to 0. � ℓ ,...,ℓ 1 � Deinition D.3. The trail hotness � is then deined as the recursive hotness sum of all the breadcrumbs in the trail �, where each subtree is weighted with the graft-point attenuation � : © ª �(�) ≡ � (����(�, �)) · � (����(�, �)) + �(� ) where � = (�, �,�)  ® � � � � ∈subtrees(�) « ¬ (34) �������(��) = {(� , � ,� ) : ����(�, �)  � ∈ �} � = {� ∈ � : � ≤ ∗ � } � � � � � � � � � � � � � � = {�  � ∈ � : � , � ∈ � } � = {� ∈ � : � ∈ � } � � � � � � � � � � � � � � The Accept predicate.Accept predicate prevents the expansion of trails after they reach the size limit. We calculate the size of a trail according to the following equation: ACM Trans. Program. Lang. Syst. 64 • Vukasovic and Prokopec �(�, �,�) ≡ codeSize(� ) (35) � ∈� � ,...,� recursionDepth Trail recursion is restricted with the function � that computes the sum of 2 of all the nodes, multiplied by a small, experimentally determined constant � (in the following, � is the Kronecker delta function, i.e. 1 ��� �,� when � = �, and 0 otherwise): ︁ ︁ recursionDepth(� ,...,� ) 1 � �(�, �,�) ≡ � · 2 − 1 where recursionDepth(� , ... , � ) = � (36) ��� 1 � � ,� � � � ∈� � ,...,� �∈{1,...,�−1} As per Equation 37 the extended trail is accepted if its relative hotness decremented by the recursion penalty �(�), is larger than the threshold function. The threshold function depends on the size of the � and trail is illustrated in the plot below. The threshold is a small, experimentally determine � if the d constant trail size �(�) is small ś hence, small trails are almost always expanded. However, after �(�)the exce size eds the value � + � ·(� − � ), the threshold starts rising linearly. A large trail can only be expanded if it is łvery hotž, but the � ℎ � � likelihood of expansion eventually approaches zero as the size of that trail approaches � the . constant �(�) �(�) − � Accept(�) ≡ Í − �(�) > threshold(�) where threshold(�) = max � , (37) ℎ � − � � � (�,ℎ)∈Π �(�) Lemma D.4. The left-hand side expression − �(�) from Equation 37 is asymptotically smaller than the the (�,ℎ)∈Π right-hand side expression threshold (�) for any call graph� and proile setΠ. Proof. For any call graph � , each call tree is either inite or ininite. If call trees are inite, then the trail size is bound (by Equation 7), which imposes an upper bound on �the(�) in the left-hand-side expression. If the call trees are ininite, then the trail size is not bound, but the call tree must contain recursive calls. The trail hotness �(�) and size�(�) grow linearly with each recursive call, but the�(p�enalty ) grows exponentially. Since the right-hand-side expression does not have any penalty, it is asymptotically larger than the left-hand □ side. Theorem D.5. When executed with the hot-code detection policies from Equations 30, 31, 32, and 37, Algorithm 2 terminates for any input call graph � and set of proilesΠ. Proof. We consider whether the repetitive steps in Algorithm 2 terminate. The op fix erationterminates ���� in a inite number of steps, as was already shown by Lemma 3.1. This leaves us with while the -loop in line 4. To show that this loop eventually terminates, we show that the condition � \ � = ∅ from Equation 31 eventually holds. Consider�the\ �set . In each loop iteration, a trail � is picked, and a set strictly of largertrails is created when extending � across its calling contexts in line 7. The trail � is then either excluded fr �om in line 10, or placed�into , meaning that it is no longer considered a top trail. We are left with a�trail \ � that does not contain�, but may instead containsubset a of trails that are strictly larger than�. If the loop iterations are repeated suiciently many times, then Accept thepredicate from Equation 37 will eventually be false for all � \ �,trails as a conse inquence of Lemma D.4. Thus, eventually � \ � stops growing. Moreover, this causes � to eventually start strictly growing, since each � frtrail om� is eventually picked byTopTrail, and moved to �. Therefore, theDetectionDone condition is eventually satisied, and this terminates the algorithm. □ ACM Trans. Program. Lang. Syst. Exploiting Partially Context-Sensitive Profiles to Improve Performance of Hot Co • de65 D.2 Hot-Callee Classification Details This section contains the deinitions and details of the trail-match and trail-cut operations introduced in Section 3.6, which are omitted there for simplicity. Deinition of trail-matching the operation ↓ in Equation 38 says the following: given a�trail and a no setde � of the inlining tree, ind a trail that contains the longest suix of the call � , ... , � sequence , ... , � . � ,...,� ,...,� 1 � � 1 � � � ↓ � ≡ arg max � − � such that {(� , � ,� ) ∈ � : ∃� ∈ � } ≠ ∅ (38) � ,...,� ,...,� � � � � ,...,� � 1 � � � � (� ,� ,� )∈�,∃� ∈� � � � � ,...,� � � � In the best case, the result of trail-matching is the same � that trail the current hot compilation� of starts with, i.e�. ���(� , � ) = � . Otherwise, the matching between the inlining tree and the original � is interrupte trail d � � � (indicating that some of the calls in the call � se , ..quence . , � , ... , � are cold), and some node of the inlining tree 1 � � (which comes after that interruption) matches a trail that starts with the � no (indicating de that �  � is a � � −1 � call from a cold to a hot subroutine). A callee in the inal inlining tree is considered hot if and only if there exists a matching trail: IsHot(�) ≡ ∃� ∈ �, � = � ↓ � (39) To ensure that InlineHot from Section 3.5 works, we additionally need to associate a trail to each hot compilation. For the initial set of hot subroutines the association is straightforward, and for the transitive hot compilations we use the trail-cut operation . Trail-cut operation ⊘ is formally deined in Equation 40 Given a breadcrumb � = (trail � , � ,� ) and its node � � � � ∈ � , the operation cuts the trail in half, such that the resulting trail is the subtree starting � .at node � ,...,� � � ,...,� 1 � 1 � (� , � ,� ) ⊘ � ≡ (�, �,�) where � ∈ � � � � � ,...,� � ,...,� � 1 � 1 � � = {� : � ∈ � } � = {� : � ∈ � } � ,...,� � ,...,� ,...,� � � ,...,� � ,...,� ,...,� � (40) � � 1 � � � � 1 � � � = {�  � : �  � ∈ � } � ,...,� � ,...,� ,� � ,...,� ,...,� � ,...,� ,...,� ,� � � � � � �+1 1 � � 1 � � �+1 Callee trail.The trail for the hot calle � e is determined with a combination of trail matching and trail � ,...,� 1 � cutting. First, we ind a matching trail � forin the trail-set � , and we then cut that trail at the subtree that � ,...,� 1 � corresponds to the call sequence � , ... , � : 1 � calleeTrail(�, � ) ≡ � ↓ � ⊘ � where � ∈ � ↓ � (41) � ,...,� ,...,� � ,...,� ,...,� � ,...,� � ,...,� � ,...,� ,...� 1 � � 1 � � � � � � 1 � � A hot compilation unit whose root subroutine corresponds to some�calle of theeprevious hot compilation unit is always associated with a trail determined by the expr calle ession eTrail(�, �). �(�) threshold(�) − �(�) 1.0 �(�) � + � (� − � ) � � ℎ � � � ACM Trans. Program. Lang. Syst. 
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