Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bayesian linearized AVO inversion

Bayesian linearized AVO inversion <jats:p> A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P‐wave velocity, S‐wave velocity, and density. Distributions for other elastic parameters can also be assessed—for example, acoustic impedance, shear impedance, and P‐wave to S‐wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance; hence, exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3‐D data set from the Sleipner field. The results show good agreement with well logs, but the uncertainty is high. </jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png GEOPHYSICS CrossRef

Bayesian linearized AVO inversion

GEOPHYSICS , Volume 68 (1): 185-198 – Jan 1, 2003

Bayesian linearized AVO inversion


Abstract

<jats:p> A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P‐wave velocity, S‐wave velocity, and density. Distributions for other elastic parameters can also be assessed—for example, acoustic impedance, shear impedance, and P‐wave to S‐wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance; hence, exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3‐D data set from the Sleipner field. The results show good agreement with well logs, but the uncertainty is high. </jats:p>

Loading next page...
 
/lp/crossref/bayesian-linearized-avo-inversion-gk6b1MiMM2

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0016-8033
DOI
10.1190/1.1543206
Publisher site
See Article on Publisher Site

Abstract

<jats:p> A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P‐wave velocity, S‐wave velocity, and density. Distributions for other elastic parameters can also be assessed—for example, acoustic impedance, shear impedance, and P‐wave to S‐wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance; hence, exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3‐D data set from the Sleipner field. The results show good agreement with well logs, but the uncertainty is high. </jats:p>

Journal

GEOPHYSICSCrossRef

Published: Jan 1, 2003

There are no references for this article.