Access the full text.
Sign up today, get DeepDyve free for 14 days.
A le u e la i n an u e e la i n ea i ns wi e essi n all s e i in ibi i n en es is nsi e e T e es n in na i al s s e is a a e ise b w a a e e s e su ea en n en a i ns C an e ai a e ns an s wa an ba kwa ea i ns k In a s e i al ase k=1 e s se as a uni ue e uilib iu A C>4 e e uilib iu is uns able an es se as s illa s lu i ns A k essen iall i e en 1, e s s e be es e i able be a es as a bis able i e Keywords: e a i a i , Rhodococcus erythropolis, s illa i ns INTR UCTI N Ba e ia Rhodococcus erythropolis an u ilise e a i a i as a a b n s u e 1, 2, 3 i s , e a i a i un e es w e e la i ns a e ui a i , w i an be e a b la e ka e l T e w la e subs ances can en e ea a i a i n pa hways. A he ce ain ch ice e a ic aci c ncen a i n an cell ensi y, scilla i ns e h yphen lic c p un s can be bse e in bac e ial cul u e 3, 4 . In e e plain bse e scilla i ns we ha e p p se a kine ic el a cycle u e hyla i n- e e hyla i n eac i ns 5, 6 . As a yna ical sys e , his el ha s e anal ies neu ne scilla p p se by DuninBa k sky 7 . The el was hi hly asy e ical because he w ll win assu p i ns. 1. e ea e e a ic aci as a ese i subs ance an i s c ncen a i ns as a pa a e e he sys e . 2. The a i he a e c ns an s e hyla i n an e e hyla i n eac i ns c ul be essen ially i e en uni y. I ha ne h ee e uilib iu p in s epen in n pa a e e s alues. hen he e was ne e uilib iu p in , he sys e ela e he s able e uilib iu scilla e a un he uns able e uilib iu . A h ee e uilib iu p in s he sys e beha e as a bis able i e as an e ci able sys e . M s hese ea u es a e c nse e als in a e sy e ical sys e . In his pape I c nsi e a el in which he nly s u ce asy e y ae essen ially i e en a e c ns an s wa an backwa eac i ns. C nsi e a i n his kin el appea e be necessa y an analysis synch nisa i n he p cesses akin place in i e en bac e ial cells in a cul u e. ORMULATION AND ENERAL RO ERTIES O T E MODEL The basic s uc u e he sys e i . 1 is he sa e as ha p esen e in p e i us pape 5 . Ve a ic aci i . 1b a e he cul u e bac e ia Rhodococcus erythropolis is e e hyla e w i es i ep ca echuic aci i 1c . C n e si ns a x an z y in i . 1a c esp n e e hyla i n- e hyla i n eac i ns a he p si i n 4. In a si ila way, c n e si ns x y an a z c esp n he sa e eac i ns a he p si i n 3. A C CLE O EN MATIC REACTIONS a a 1 z2 1 z2 x x kx kx 1 x 22 1 x ky ky 1 y2 2 xx 1 1 a 2a 2 COO COO COO COO 1 y 1 y2 1 kz 2 1 kzy a a 1 a2 OC OC 1 z2 1 z ky ky 1 x2 OC OC x2 b) a) c) a) b) c) ws esc ibe he a es es anilic aci an y FIG. 1. a) The cycle eac i ns. E p essi ns ne he a espec i e eac i ns, a ep esen s e a ic aci b), x an z is p ca echuic aci c). A he a ws in i . 1a he e a e i en e p essi ns ela in he a es c esp n in eac i ns he c ncen a i ns ea en s. These ela i ns a e base n he ll win assu p i ns: 1. Ve a ic aci a) ac s as a c ep ess he 3-O- e e hylase. 2. Vanilic aci x) ac s as a c ep ess he 4- e hylase. 3. ca echuic aci y) ac s as a c ep ess he 3- e hylase. 4. Is anilic aci ac s as a c ep ess he 4-O- e e hylase. ll win he au h s 8-13], we use he e p essi n 1/(1+rm) wi h m 2 esc ibe he in luence he c ep ess c ncen a i n n he c ncen a i n he c esp n in en y e. M e e aile iscussi n his ues i n ha e been p esen e ea lie 5]. ine ic ela i ns sh wn in i . 1a can al e na i ely esc ibe all s e ic inhibi i n en y es ins ea hei ep essi n. The sche e in i .1a can be als ela e e e sible subs i u i n eac i ns in w i e en p si i ns in s e he lecules, n necessa y in e a ic aci . Un e hese assu p i ns, he e lu i n he sys e can be esc ibe by he ll win se ina y i e en ial e ua i ns: da a kx kz a 2 2 2 dt 1 a 1 x 1 y 1 z 2 , 1) dx x kx ky a 2 2 2 dt 1 a 1 x 1 y 1 z 2 , dy x ky ky z 2 2 2 dt 1 a 1 x 1 y 1 z 2 , dz a ky kz z . 2 2 2 dt 1 a 1 x 1 y 1 z 2 E ua i ns 1-4) esc ibe he 5]. This i e, h we e , we ea a iable an n as a c ns an p si i ely in a ian an sa is ies b h p pe ies i en in he ea e ua i ns 1-4) ha 2) 3) 4) sa e se eac i ns as ha analyse ea lie e a ic aci c ncen a i n a) as a yna ical pa a e e . The yna ical sys e 1-4) is he ic e uilib iu p s ula e. s he lie pape 5] e ain ali . I ll ws d a x y z) 0 . dt S , he e is an in e al i n 5) const. 6) I eans ha he su c ncen a i ns all ea en s is c nse e . In ac , he sys e c ul be ea e as he sys e he e h ee. One yna ical a iable c ul be eli ina e usin he c nse a i n law 6). we e , hi hly sy e ical shape he e ua i ns 1-4) is e c n enien calcula i n han he c esp n in sys e he hi e . The sys e 1-4) has ne use ul p pe y. The subs i u i n: a y, x z, y in e ua i ns 1-4) an a, z x, k 1/k in he ela i n: 8) 7) escalin he i e acc t' t k esul s in he se e ua i ns which is i en ical wi h he s a in ne. S , a he sa e alue C, he sys e s wi h ela i e a e c ns an s k an 1/k ha e he sa e nu be e uilib iu p in s wi h he sa e s abili y p pe ies. E en e, he ll win ela i ns be ween s lu i ns b h sys e s ake place: A C CLE O EN MATIC REACTIONS 9) a1(t)=y2(t/k), x1(t)=z2(t/k), y1(t)=a2(t/k), z1(t)=x2(t/k), whe e subin e 1 an 2 e e s lu i ns wi h ela i e a e c ns an s k an 1/k espec i ely. O c u se, ela i ns 9) will be ali i ini ial c n i i ns sa is y ela i ns 7). E lu i n he sys e epen s n he alues pa a e e k an in e al i n C. In i . 2 he e a e sh wn w a eas A an B, a ke wi h uble h i n al lines, whe e he sys e has h ee e uilib iu p in s. In he a ea A he e a e w s able e uilib iu p in s sepa a e by he hi uns able e uilib iu sa le p in ). A k an C bel n in his a ea, he sys e beha es as a bis able i e . In he a ea B he sys e has he ll win e uilib iu p in s: s able n e, sa le-p in an uns able cus. A alues k an C he a ea B, he sys e beha es as an e ci able sys e . A A q q B B Relative rate constant (k) Relative rate constant (k) pp 40 80 Integral of motion (C) Integral of motion (C) FIG. 2. a a e e plane he sys e . The sys e has w s able an ne uns able e uilib iu p in s in he a ea A, ne s able an w uns able e uilib iu p in s h ee uns able e uilib iu p in s in he a ea B. Bey n he a eas A an B he sys e has ne e uilib iu . Cu e p sepa a es a eas wi h ne s able e uilib iu p in ha wi h n s able e uilib iu p in . Cu e sepa a es he a ea B wi h h ee e uilib iu p in s ha wi h sin le e uilib iu . The cu es a e base n nu e ically calcula e e uilib iu p in s usin Ma he a ica wi h achine p ecisi n 16 i i s) an p in in si si ni ican eci al i i s. e e ails see e . An e e plary phase portrait o this kin is shown in Fig. 6. There is a ery narrow part o the area B at its right-han e ge, where all three e uilibriu points are unstable. In this case, the autooscillations appear in the syste . Beyon the areas A an B the syste has one e uilibriu point. The single e uilibriu is stable or alues o C s aller than those alling in the cur e p in Fig. 2, an is unstable or the higher alues o C. All the entione areas, shown or k>1 in Fig. 2, appear also at k<1. Correspon ing cur es i i ing the para eter plane at k 1 are sy etrical on the logarith ic scale o k to those shown in Fig. 2 in respect to the straight line k 1. The bor ers o the areas shown in Fig. 2. ha e been eter ine nu erically with the precision o si signi icant eci al igits. EVOLUTION OF T E SYSTEM AUTOOSCILLATIONS Autooscillations appear in the syste at the alues o C higher than those correspon ing to the cur e p in Fig. 2. Insi e the area B the cur e p goes slightly abo e the cur e q. So, there is a narrow strip o the area B between p an q where the syste has three unstable e uilibriu points. For para eter alues belonging to this strip, the syste has oscillatory solutions with all three e uilibriu points place insi e the correspon ing li it cycle. Analytical linear analysis o stability is possible only in the ully sy etrical case with k=1. In this case the syste has an uni ue e uilibriu a x y z C . 4 10) point 10) are Eigen alues o the syste in the icinity o the e uilibriu gi en by the e pressions 11): 32 C 2 16 16 C 1,2 i 2C 2 . 4 , 1 a2 11) The ourth eigen alue is e ual to ero. Respecti e nor al ariables can be e ine by the trans or ation 12). Because o the conser ation law 6) the ariable 4 has a constant alue C/2, an the e olution o the syste can be represente in a 3- i ensional space 1 , 2 , 3 . 0 1 2 1 2 1 2 a x . y z 12) Nu erical solutions a(t) at k=1 an C 5 or 50 are shown in Fig. 3. Solutions x(t), y(t) an z(t) ha e the sa e shape as a(t) but are elaye in respect to a(t) by one, two an three uarters o the perio respecti ely. The perio o oscillations increases with growing alues o C see Fig. 4). At alues o k essentially i erent ro the unity, the shapes o oscillations o ariables a, x, y an z beca e i erent ro each other. As an e a ple, solutions a(t), x(t), y(t) an z(t) at k 40 an initial con itions a(0) 80, x(0)=y(0)=z(0)=0 are shown in Fig. 5. Accor ing to the substitution 9), solutions or k 1/40 0.025 an initial con itions y(0) 80, a(0)=x(0)=z(0) 0 can be obtaine ro Fig. 5. It is enough to change the ti e scale by substitution 2000 instea o 50 or the highest alue o ti e an rea Fig. 5a as y(t), 5b as z(t), 5c as a(t) an 5 as x(t). Depen ence o the oscillation perio on the su o reagent concentrations or a ew alues o k is shown in Fig. 4. The cur es presente in Fig. 4 were obtaine on the basis o nu erical solutions o e uations 1-4). Let us note that at high alues o k the perio o oscillations re ains al ost constant in a uite wi e range o C. For e a ple, at k 20 the perio changes its alue ro 9.60 at C 40 to 10.16 at C 100. So, at such alues o k the syste can work as a pace aker or so e rhyth s. EVOLUTION OF T E SYSTEM AT MULTIPLE EQUILIBRIUM POINTS At su iciently high alues o k the syste can ha e three e uilibriu points areas A an B in Fig. 2). In the area A, at k>8.2068, two o these e uilibriu points are stable an the thir one is unstable. Let us consi er, as an e a ple, the syste with k 40. At this alue o k, the area A inclu es the range o C ro 12.4932 to 21.0277. The alues o the ariables in e uilibriu an correspon ing eigen alues or k 40 an C 16.6 are gi en in Table 1. The yna ical ariables in the unstable e uilibriu point 2 in Table 1) ha e inter e iate alues in respect to those escribing the two stable e uilibriu points. Thus, in the state space o the syste , the unstable e uilibriu point is situate so ewhere between the stable e uilibriu points. Depen ing on initial con itions, the syste goes to the e uilibriu 1 with relati ely low alue o x or to the e uilibriu 3 with a high alue o x. The e uilibriu points 2 an 3 beco e closer an closer to each other when the alue o C ecreases ro 16.6 to 12.5. At the sa e ti e the o ain o attraction o the e uilibriu 1 is growing. E entually, at C 12.4932, the e uilibriu points 2 an 3 annihilate. In contrast, increasing alue o C ro 16.6 to 21 brings the e uilibriu points 1 an 2 closer an closer to each other. These e uilibriu points annihilate at C 21.0277. I i not e plore in etail the hypersur ace separating attraction o ains o the e uilibriu points 1 an 3. Ne ertheless, it is intuiti ely clear that the attraction o ain o the e uilibriu with a low alue o x point 1 in Table 1) is bigger at the le t-han e ge o the area A Fig. 2) than at the righthan e ge o this area. In the whole area A in all o the three e uilibriu points, the alues o y an z constitute only a inute part o the pool o all reagents C). Fully analogical iscussion can be applie to the area with k 1/8.2068 0.0840336 with respecti e changes in the roles o ariables an scale o ti e, accor ing to the substitutions 7) an 8). There is another area B in Fig. 2) with three e uilibriu points. This area appears at k>11.9 or at k 1/11.9 0.0840336. (a) (b) FIG. 3. Oscillations in a ully sy C=5 a) or C 50 b). etrical syste . Nu erical solutions a(t) at k 1 an Period 4 0 20 40 60 Integral of motion (C) 80 100 FIG. 4. Depen ence o the perio o oscillations on the su o reagent concentrations C). Values o the relati e rate constant k are shown at the respecti e cur es. Perio s were obtaine ro nu erical solutions o e uations 1-4), using Mathe atica . Let us return to the e a ple with k=40. For this alue o k an C belonging to the inter al 21.0277, 34.1035), the syste has a single stable e uilibriu characterise by three real an negati e eigen alues. As soon as C e cee s the alue o 34.1035, two a itional e uilibriu points appear. Both o the are unstable. The syste has three e uilibriu points or 34.1035 C 42.0551. Table 2 presents an e a ple o such three e uilibria or C=38. As can be seen ro Table 2, the sa le-point 2) is locate between the stable no e 1) an unstable ocus 3). In any case, the e olution o the syste lea s to e uilibriu 1. owe er, orbits attaining e uilibriu 1 can be essentially i erent or i erent initial con itions. In Fig. 6, there are shown pro ections o the two orbits on the plane a,x) or the alues o k=40 an C=38 as those use in Table 2. In the case o the orbit starting ro the point A initial con itions a(0), x(0), y(0), z(0)} = 1.134, 35.4, 1.408, 0.058}) changes in the alues o the ariables are ery s all. The syste rela es to e uilibriu 1 al ost onotonously. In contrast, on the orbit starting ro point B a(0), x(0), y(0), z(0)}= 1.66, 30.63, 5.33, 0.38}) the a plitu es o changes o the ariables are uch higher. Be ore attaining e uilibriu 1, the orbit goes aroun the unstable e uilibriu 3. So, we ha e to o with an e citable syste . E citation e ents are so ewhat i erent ro those escribe earlier 5]. eneration o positi e spikes o all ariables in the present syste is i possible because o the conser ation law 6). A ter start ro the point B, one can obser e i inishing alue o x, which reaches its ini u o 21.74 at ti e 3.6. In e pense o x, spikes o the re aining ariables are generate . The a i u alues appear in the ollowing se uence: y 2.97)=12.35, z 4.31)=1.72 an a 5.61)=4.92. E en ini u alue o x is essentially higher than a i u alues o y, z an a. (a) (b) (c) (d) FIG. 5. Oscillations in a highly asy C=80. etrical syste . Nu erical solutions at k=40 an points TABLE 1. Coor inates a,x,y,z) an respecti e eigen alues at k=40 an C=16.6 E E uilibriu no. uilibriu no. a x y z ) o the e uilibriu 1 1 16.0935 16.0935 0.504903 0.504903 4.85482 1010-5 4.85482 -5 1.54745 1010-3 1.54745 -3 -72.8782 -72.8782 -39.996 -39.996 -19.9246 -19.9246 2 2 14.1969 14.1969 2.40104 2.40104 2.96349 1010-4 2.96349 -4 1.75225 1010-3 1.75225 -3 -46.9177 -46.9177 -39.9947 -39.9947 3.16435 3.16435 3 3 2.9172 2.9172 13.6393 13.6393 3.59011 1010-2 3.59011 -2 7.67861 1010-3 7.67861 -3 -41.2675 -41.2675 -39.7528 -39.7528 -0.798068 -0.798068 a x y z TABLE 2. Coor inates a,x,y,z) an respecti e eigen alues at k=40 an C=38 E a x y z E uilibriu no. 1 1 uilibriu no. 2 2 1.16751 1.16751 1.09956 1.09956 a 34.4423 34.4423 36.3598 36.3598 x 2.31183 2.31183 0.524838 0.524838 y 0.0783655 0.0783655 0.0158716 0.0158716 z -7.75538 -7.75538 -32.844 -32.844 1 1 -0.731001 -0.731001 -17.7117 -17.7117 2 2 4.1651 4.1651 -1.02994 -1.02994 3 3 ) o the e uilibriu points 3 3 2.16193 2.16193 26.8251 26.8251 8.34074 8.34074 0.67221 0.67221 -1.48735 -1.48735 0.230103 0.829406i 0.230103 0.829406i 0.230103-0.829406i 0.230103-0.829406i The ariable x constitutes also a o inating raction o the whole reagent pool in all e uilibriu points see Table 2). So, in the e citable regi e area B in Fig. 2), the ariable x beha es like a reser oir substance. Coor inates o the sa le-point 2 eter ine the e citation threshol . The alue o C=38 use in Table 2 an Fig. 6 correspon s to the i le o the area B in Fig. 2 at k=40. At the le t-han e ge o this area, at C slightly higher than 34.1035, the sa lepoint 2 an unstable ocus 3 are ery close each to other an both are re ote ro stable no e 1. In such a situation the e citation threshol is relati ely high an a plitu es o generate spikes o the ariables are relati ely low. ith the growing alue o C e uilibriu points 1 an 2 co e closer an closer to each other. The e citation threshol beco es lower an lower. At C=42.0548, still insi e the area B in Fig. 2, estabilisation o the e uilibriu 1 takes place. So, in the inter al 42.0548 C 42.0551 the syste has three unstable e uilibriu points an oscillati e solutions. At C=42.0551 the e uilibriu points 1 an 2 annihilate. Again, analogical iscussion can be applie to k=1/40=0.025 with substitution 7). All processes will then be 40 ti es slower accor ing to ti e rescaling 8). 1 36 A 2 32 B 3 a FIG. 6. E citable syste . Pro ections o the two orbits on the plane a,x) at k=40 an C=38. Coor inates o stable no e 1), sa le-point 2) an unstable ocus 3) are gi en in Table 2. Orbit starting ro the point A 1.134, 35.4, 1.408, 0.058) correspon s to subthreshol rela ation. Orbit starting ro the point B 1.66, 30.63, 5.33, 0.38) correspon s to e citation. Orbits obtaine ro nu erical solutions o the e uations 1-4) using Mathe atica . CONCLUSIONS The yna ical syste 1-4) shares any o es o e olution with one analyse earlier 5]. Pro i ing a proper choice o para eter alues, both syste s can rela to an uni ue stable e uilibriu or beha e as bistable triggers. Both syste s can ha e autooscillatory solutions an can beha e as e citable syste s. But in contrast to the earlier presente syste with one reser oir substance, the syste 1-4) can not beha e as a trans ucer o sti ulus strength to re uency. Both syste s can escribe etabolic oscillations in a single bacterial cell. Such oscillations will appear in a bacterial culture i oscillations in i erent cells are synchronous. I suppose that both consi ere syste s will be use ul in searching a ourable con itions or synchronisation.
Annales UMCS, Physica – de Gruyter
Published: Mar 1, 2015
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.