Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractThis study suggests an approach for computing the specific energies of the internal heat sources in logs subjected to freezing. The approach maximally considers the physics of the freezing processes of both the free and the bound water in wood. It reflects the influence on the mentioned energies of the wood density above and below the hygroscopic range. It also considers the icing degrees formed separately by both the free and bound water in the logs, as well as the influence of the fiber saturation point of each wood species on its respective amount of non-frozen water depending on temperatures below 272.15 K. Mathematical descriptions of the specific heat energies Qv-fw and Qv-bw released in logs during free water freezing in the range from 0 °C to −1 °C and of the bound water below –1 °C, respectively, have been executed. These descriptions are introduced in own 2D non-linear mathematical model of the freezing process of logs. For the solution of the model and computation of the energies Qv-fw and Qv-bw, a software program based on the suggested approach and mathematical descriptions was prepared in FORTRAN, which was input into the calculation environment of Visual Fortran. With the aid of the program, computations were completed to determine the energies Qv-fw and Qv-bw and their sum, Qv-total of a beech log subjected to freezing. The beech log had a diameter of 0.24 m, a length of 0.48 m, an initial temperature of 20.5 °C, a basic density of 683 kg·m−3, and a moisture content of 0.48 kg·kg–1 during its 30 hours in a freezer at approximately −30 °C.
Acta Silvatica et Lignaria Hungarica – de Gruyter
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.