Access the full text.
Sign up today, get DeepDyve free for 14 days.
e de strate t e a ua y e et a e i res sedi e ts tw akes M sz e (E P a d) a d Skrzy ka ( P a d) T e erti a radie t i 13 a ues aried wide y r a ut -4 5 (-1 ) i ate su er 1 3 t a ut 2 5 (-1 ) i ate wi ter, i t e u er st sedi e t r i es a ut 3- eters i e t T ese erti a s a are t y are t due t idati r te erature a es, ut rat er t t e i er radie t t e d w ward de rease r du ti rates ia t e a eti a id er e et a e a d tati at way rat er t a ia t e C 2- 2 at way T e r du ti 13 a ues are t e i est duri su er w i e t e west duri wi ter, re e t13 C i wi ter, ate ed es e ia y duri sur a e sa i T e d w ward radie t autu a d, at reater de t s, i ate su er resu ts r is t e e ri e t t e residua re urs rs et a e, red i a t y C 2 Keywords: ar is t e ud et , is t e, et a e, ake, sedi e t, dia e esis, ree use e e t, M. ORION DR SE , S. A AS, T. PIE OS 1. INTRODUCTION Metha e pr ducti is a i p rta t part the a car cyc i (e. . Crai a d Ch u 1 82, hai a d Ras usse 1 83, Stee e et a . 1 8 ) a d etha e ic pathways are deter i ed y c e isti r a ic atter, water, a d acteria acti ity. The wi act rs ha e ee pr ed r pr p sed t a ect etha e esis a d etha e u r atura wet a ds: (1) sa i ity (De Lau e et a . 1 83), (2) erti izati paddy s i ( ada 1 0), (3) s i red p te tia (Cicer e et a . 1 83, S e s a d R ssewa 1 8, ( utrie t a d r a ic c te t sur ace s i s a d their thick ess ( arriss a d Se acher 1 81). (5) su strate a d ati e e d-pr duct c (De Lau e et a . 1 8 ), ( ) p a t type a d its physi ica state ( e ti ati rate, a e, hei ht Dacey a d u 1 , Dacey 1 81, Cicer e et a . 1 83, Se acher et a . 1 85), a d ( ) pri ary pr ducti ( hiti a d Cha t 1 3). I additi a y e ter a act rs ike (1) wi d speed (Se acher et a . 1 83), (2) at spheric pressure (Mats a d Like s 1 0), (3) isture c te t r water e e ( arriss et a . 1 82, S e s a d R sswa 1 8, a d ( te perature (Baker-B cker et a . 1 , S e s a d R sswa 1 84, Se acher et a . 1 8 ) ay c tr the etha e u r atura wet a ds. I this paper we rep rt seas a s i ertica pr i es i c a d car is t pic c p siti etha e. Basi the ther dy a ics, a i p icit assu pti c u d e appare t y ade that car is t pe racti ati act r etwee the etha e precurs rs a d etha e as, depe ds te perature. L ica y, at the wer te perature the ake e ir e t, the racti ati act r c u d e e pected t e ar er. Other act rs c tr i is t pe c p siti etha e are is t pe rati i su strates ( etha e precurs rs) a d etha e c su pti y icr ia idati . I atura reshwater syste s, the er e tati acetate, C 3COO C 4 CO2 (Barker 1 3 ), a d the reducti car di ide, CO2 4 2 C 4 0), are the ai etha e ic pathways. Based up 2O (Takai 1 reshwater paddy s i i cu ati e peri e ts, the e d e er 13C a ue etha e pr duced r acetate dissi i ati is -3 a d the 13C a ue C 4, r CO2/ 2 was esti ated t e - t - 0 (Su i t a d ada 1 3). There re, cha es i the re ati e rati s etha e r ati pathways ay ead t te p ra a d spatia s the 13C a ue i C 4, th u h a ra ic atter precurs r ay sh w h e e us car is t pic c p siti . 13 It has ee sh w that, i atura c diti s, diur a s i s e cases d es ut, usua y d es t c rresp d t the diur a s water r sedi e ts te perature, ut rather c rresp ds t the a u da ce a d is t pe characteristics the etha e precurs rs with e i i e r e etha e idati ( drysek 1 5, 1 ). There re, u k w act r(s) sti re ai r CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE atura c diti s reshwater akes syste s, ecause ack i r ati spatia a d te p ra s etha e esis i reshwater sedi e ts, particu ar y i akes (e. . te ate et a . 1 84, hiticar et a . 1 8 ). It was u d rece t y that 13 a ues reshwater etha e te ds t ec e re e ati e with depth the water c u a d depth sedi e ts ( drysek et a . 1 4, drysek 1 , 2005a). C se ue t y, e ay state that data pu ished i pre i us w rks ay t ir y represe t is t pic c p siti t ta etha e e itted r reshwater sedi e ts. There re, the a s the prese t study are: 1) t tai ew data C 4 e erated r akes with respect t spatia a d te p ra distri uti s, 2) etter u dersta di the echais s etha e esis, 3) t pr ide ew data r is t pic ass a a ces car cyc i i ear y dia e esis i reshwater syste s a d ree h use ases u . 2. MATERIALS AND MET ODS 2.1. STUD AREA Metha e was sa p ed i tw akes, e i Easter a ther i ester P a d. A ake i Easter P a d, cated ca. 50 k NE r Lu i (5 .4 N, 23.1 E), was se ected i this study as the ai sa p i site. It e s t the re i the cz a dawa Lake a d. The water a a ce c ear y sh ws that this re i is sh rt water. Mea precipitati , a y years easured, is 5 0 a d e ap rati is 450 . A ut 110 is ru which 52 akes the u der r u d ru . S a per ea i ity a d water capacity P eist ce e dep sits u der yi the ake a d the act that the area is at, with a d ze r s eters a i u re ati e hei ht, are the reas s that the water e e is t deep a d the sur ace is swa py ( i at et a . 1 1). Lake M sz e is i its i a sta e the ake de e p e t, it is surr u ded y peat- s, swa ps a d arshes. It is a dystr phic, ery sha w ( a . depth 0.8 ), s a (0.1 k 2) ake. N seas a s i the water e e has ee ser ed. The tt is ery at a d practica y ree r a y acr phytes. A the a k the ake ar u d is c ered y a ati peat- . The sedi e ts are e tre e y s t a d c p sed ear e c usi e y in situ r a ic atter detritus (C r i the dry sedi e t is a ut 5 ). M. ORION DR SE , S. A AS, T. PIE OS FIG. 1. Map sh wi the cati s scribed i : drysek (1 5, 1 ,1 sa p ed akes i P a d. Sa p i ). sites are de- Occasi a y sa p i ha e bee carried ut a s i Lake Skrzy ka (52.15 N, 1 .0 E, ca. 30 k s uthward r P z a , P a d). Lake Skrzy ka is a . 2.0 eters depth a d sh ws ear ide tica i ica a d hydr ica character as Lake M sz e, but is situated i uch ess arshy re i . 2.2. SAMPLIN AND IELD OBSERVATIONS I rder t reduce the i ue ce diur a s ( drysek 1 4, 1 5) each sa p i ca pai was carried ut 12:00 a d 3:00 PM. Vertica sa p i pr i e was d e by se ue tia a itati deeper z es sedi e t by ea s a sca ed (with 1 c accuracy) padd e. The depth water i the sa p i sites was 0.5 . The isua y esti ated sa p i depth res uti was appare t y better tha 5 c . Bubb es were btai ed r sub er ed sedi e ts by a itati , a d the trapped by a i erted u e 20 c i dia eter i t a ass b tt e i ed with as- ree water. The upper st ayer sedi e t was a itated irst, u ti a the etha e had appare t y bee re eased. The , the e t, deeper z e sedi e ts was stirred, a d i each subse ue t z e the thick ess the stirred sedie ts was arr wer. This pr cedure appare t y pre e ted c ta i ati etha e r a i e z e by etha e r a ther er ayi z e. Sa p i ti e bubb e ases was usua y t er tha 2 i utes. S e water re ai ed i the b tt e. The b tt es were sea ed with a buty rubber cap a d a a u i u sea , a d the sa p es were i ediate y treated with C 2. B tt es with sa p es were st red i a re ri erat r (34 C) i a i erted p siti . E peri e ts with a a ysis repeated at di ere t ti es r se era ti es pr ed that the e th the peri d r which sa p es were he d be re they were a a yzed did t i ue ce resu ts. M re er, it was pr ed pre i us y that sa p es c ected at the sa e ti e r the sa e depth water c u , r the sa e depth sedi e ts (025 c ) a d r reas ab y si i ar sedi e ts, but at CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE di ere t sa p i stati s, sh wed the sa e 13C resu ts withi a a ytica err r which was r 0.05 t 0.2 ( drysek et a1. 1 4, drysek 1 4, 1 5). Vertica pr i es te perature i sedi e ts were easured with a precisi 0.1 C, usi a 3- eter ther c up e pr be ade by Czaki . 2.3. ANAL TICAL TEC NIQUES ith ecu ar sie es, a dry-ice-etha i ture, a d i uid itr e , the etha e was cry e ica y puri ied u der acuu r ther hydr e a d carb c tai i ases. Subse ue t y, the etha e, t ether with hydr e a d carb - ree ases was passed thr u h a c pper ide ur ace (850 00 C) twice. The pr ducts btai ed, 2O a d CO2, were separated cry e ica y. Carb is t pe a a yses were ade a di ied MI-1305 ass spectr eter with dua i et ( a as, 1 ) a d h e- ade detecti syste s ( a as a d Sk rzy ski, 1 80). The is t pe rati s are e pressed as 13C a ues re ati e t the PDB sta dard, usi a ass spectr etric c paris w rki CO2 as with CO2 prepared r NBS 1 a d NBS 22 sta dards. The i ter a precisi btai ed was 0.05 . The repr ducibi ity is t pe preparati was r 0.05 t 0.2 ). The che ica c p siti sa p e ases was a a yzed by TCD as chr at raphy ( E wr chr at raph S04 ) a d the c te t r a ic atter ( C r ) was a a yzed by Di ere tia Ther a A a ysis a d Ther ra i etry ( Deri at raph 1500D ). 3. RESULTS A data ha e bee prese ted i i ures. Sy b s, i each i ure represe ti the sa e ake, c rresp ds t the sa e pr i e. Si ce te perature is the act r c tr i is t pe e ects, te perature easure e ts i the sedi e ts pr i es ha e bee carried ut. I the spri 1 3, pr i es te perature ( i . 2a) i Lake M sz e te d t decrease t sedie t depth 0.8 , a d the i crease at the reater depths. I the ear y a d ate su er 1 3, the te perature sedi e ts decreases d w wards. S e e tra te perature pr i es, which are t acc pa ied by as sa p i , are sh w i i . 2a. we er, i ery ate su er, i the Lake Skrzy ka sedie ts, the hi hest te perature has bee u d at the depth ab ut 0. ( i . 2b). I the autu 1 3 the te perature te ded t i crease t sedi e t depth 1.3 , a d the decreased at reater depth. I the wi ter 1 4 the te perature i creased d w wards. Sa p i i 2.0 .2 (Lake M sz e) a d 3.05.23 (Lake Skrzy ka) ha e t bee ass ciated with te perature easure e ts. M. ORION DR SE , S. A AS, T. PIE OS FIG. 2a. Te perature s i ertica pr i es i the Lake M sz e sedi e ts (E P a d), each p i t c rresp ds t the as sa p i i ter a , te perature was easured i 10 c ertica i ter a s. A the sy b s i each i ure represe ti Lake M sz e re er t the sa e pr i e. S e additi a te perature pr i es has bee sh w here, but they are t represe ted by sa p es. FIG. 2b. Te perature s i ertica pr i es i the Lake Skrzy ka sedi e ts ( P a d), each p i t c rresp ds t the as sa p i i ter a , te perature has bee easured i 10 c i ter a s. A sy b s i each i ure represe ti Lake Skrzy ka c rresp ds t the sa e pr i e. CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE FIG. 3a. Vertica s a d seas a cyc e i the ertica c i the Lake M sz e sedi e ts. s i FIG. 3b. Vertica s a d seas a cyc e i the ertica c i the Lake Skrzy ka sedi e ts. s i Metha e c i bubb es aried r 1 t 0 i the prese t i esti ati s ( i . 3ab, ab). CO2 c stituted r ess tha 1 t ab ut 8 ( i . ab), but d i a t y itr e c stituted the ther c p e ts, r se - M. ORION DR SE , S. A AS, T. PIE OS era t ab ut 80 the ase us bubb es. O y trace a u ts ther ases were detected. I e era , bubb e e erati by sedi e ts weak y ary a the pr i es, the etha e c te t duri su er was hi h i c trast t that duri c d seas s ( i . 3ab). I s e pr i es, especia y take i the spri a d autu ( i . 3ab) the bubb es r id-depth z es which are re ati e y rich i etha e. The west c etha e has bee ted i the deepest part the c d seas s pr i es ( i . 3a). Si pr i es the carb is t pe c p siti etha e i sedi e ts r Lake M sz e are sh w i i . 4a, a d the ur ther pr i es are sh w i i . 4b (Lake Skrzy ka). I Lake M sz e, sa p i stati s were ab ut 1 r 13 the ar i the ake. A e era tre d decreasi C a ues with i creasi depth was bser ed i the pr i es take i 2.0 .2 , 3.05.01, 3.08.30 (Lake M sz e, i . 4a). This patter see s t c rresp d t sedi e ts te perature, especia y whe k the pr i es i : the su er ( i . 4ab) upper part the pr i e the ate spri ( 3.05.23, i . 4b) - the upperst parts sedi e ts are a ready war ( i . 2a), a d wer part the pr i e the ear y autu ( 2.0 .2 , 3.14.11 i . 4a) the deeper sedi e ts are sti war ( 3.14.1 1, i . 2a). I Lake M sz e duri sa p i i 3.1 1.14 a d 4.02.11 the ake was r ze (10 a d 15 c ice c er, respecti e y). These pr i es sh wed tre ds 13 i creasi C a ues with i creasi depth ( i . 4a). FIG. 4a. Vertica s a d seas a cyc e i the ertica a ue i the Lake M sz e sedi e ts. si CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE FIG. 4b. Vertica s a d seas a cyc e i the ertica a ue i the Lake Skrzy ka sedi e ts. si Duri wi ter etha e e erati r the upper 1 was s w that y se era i i iters as ha e bee re eased due t a itati the sedi e ts (whereas i the sa e p ace duri the su er the sa e u e sedi e t re eased appr i ate y th usa d ar er u e the as). Thus, the upper st sa p e the 4.02.11 pr i e represe ts etha e r as wide a i ter a sedi e ts as 0.0 t 1.2 . The autu 1 3 a d 1 4 pr i es e hibited a rather hi h 13C a ue as c pared t that i the ate spri a d ear y su er pr i es, but the hi hest a ues were sh w by the ate su er sa p es a d the west a ue by the ate wi ter sa p e. 4. DISCUSSION A EIN O SEDIMENTS AND ISOTOPE RACTIONATION A ENERAL OVERVIE I e era , re ati e y si p e, wecu ar wei ht c p u ds, such as structura carb hydrates a d pr tei -beari ateria s, are re easi y deraded tha the c p e p y eric c p u ds such as the i i w dy a d e er e t a uatic p a ts (M re 1 , etze 1 5, ya a et a . 1 , ea M. ORION DR SE , S. A AS, T. PIE OS a d I es 1 8. r e a p e, Be (1 ) i cubated ded s i a aer bica y a d u d that uc se a d pept e were de raded t etha e a d carb di ide uch aster tha ce u se, a th u h the t ta u es etha e a d carb di ide e e tua y pr duced r the three substrates were r u h y the sa e. Si i ar y, a a ateria is dec p sed t etha e a d carb di ide ab ut 10 ti es aster tha is i ce u ses (Be er et a . 1 8. There re, etha e pr ducti sh u d decrease with sedi e t aturati . I act, tube i cubati s sh wed that the rate etha e pr ducti i reshwater ake sedi e ts decreased r a i u a ues at sur ace t ear y zer at depths 40 t 0 c . Likewise, t ta r a ic carb decreased r sur icia a ues (5 t 2 ) at 40 t 0 c with urther decreases with depth ( ya a et a . 1 , ya a 1 0). B air a d Carter (1 2) esti ated the carb is t pe racti ati act r duri etha e pr ducti i a ic ari e sedi e ts t be 1.032. They ha e sh w that the 13C a ue etha e pr duced r acetate is re e ati e 13 tha the C a ue the ethy r up the acetate. rzycki et a . (1 8 ) ha e u d that the carb is t pe di ere ce the ethy carb acetate a d etha e is 2 . The 13C a ue C 4 pr duced r acetate u der steady state c diti s was esti ated t be si i ar t that ethy carb acetate (43 t -30 ) i su ate dep eted reshwater areas a d the i tra ecu ar is t pe distributi acetate was -43 t -30 r ethy carb a d -24 t -15 r carb y carb (Su i t a d ada 1 3). It was rep rted a s that, i the CO2-C 4 syste , the racti ati is 1.04 at 3 C ( rzycki et a . 1 8 ) a d ra es wide y depe de t bacteria species r e a p e, at 45 C the racti ati act r aries at east r 1.045 t 1.0 1 ( a es et a . 1 8). Metha e pr duced r ther substrates tha carb di ide a d acetate, c u d be c assiied as a third r up (Ore a d et a . 1 82) but we d t ha e e ide ce that 13 a d its c u d be di ere t r the a ue r etha e pr duced r carb di ide a d acetate. T this r up pathways ay be r e a p e, the pr ducti a d c su pti the ethy r up ethi i e a d di ethysu phide, ethy ated a i es, etha , etha , be z ate, reducti carb ide, r ate, etc. ( i d er a d Br ck 8ab, ei er a d eikus 1 8, Patters a d espe 1 , Ore a d et a . 1 82). we er, y u der certai specia c diti s this third r up etha e ic pathways d es p ay a i p rta t r e. i et a . (1 83) rep rted that 35.1 1.1 etha e esis ccurri i s urries su ate-rich i tertida sedi e ts was r tri ethy a i e, whereas L ey a d u (1 83) deter i ed that 15 a d 5 t ta etha e esis i w su ate ake sedi e ts c u d be acc u ted r ethy a i es a d etha , respecti e y. The act r i iti acetate er e tati is the pr ducti rate acetate, whereas the CO2/ 2 pr ducti C 4 ay be c tr ed by 2 tra s er (C rad a d Babbe 1 8 ). we er, t be re speci ic, the act r i iti acetate CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE dissi i ati is the a ai abi ity acetate. Acetate pr ducti rate ca be ery hi h, but y a itt e racti is c erted t etha e. I hydr e is pr duced i substa tia a u ts by bacteria a d diss ciati water, a d ikewise the CO2 c i water is re ati e y hi h, these ay e ha ce etha e esis ia the CO2/ 2 reducti i the upper st h riz s sedie ts. The abu da ces y e a d ther p te tia y i p rta t e ectr accept rs supp rti the dec p siti r a ic atter a s depe d the rates icr bia acti ities that are, i tur , c tr ed by i ht a d te perature resu ti r day- i ht s ( drysek 1994, drysek et a . 199 ). M re er, the di ere t echa is bi e ic etha e pr ducti ca resu t i a wide ra e is t pic c p siti especia y withi i i eters t ce ti eters the sedi e t-water i ter ace. I e era , the c s CO2 a d acetate i ari e sedi e ts i crease a d decrease d w ward, respecti e y (Cri a d Marte s 198 ). B th r ss acetate pr ducti rate a d acetate c i sedi e ts is the hi hest i the sur ace ayer (02 c ) a d it is se era ti es wer at depth 8-10 c , a th u h the acetate idati rate with depth, eed t be better c ari ied (Christe se 1984, Miche s et a . 1989). 14 C i cubati e peri e ts de strated that acetate c i sedie ts decreased substa tia y a ter i cubati peri ds (Miche s et a . 1989). Acetate tur er is hi h ear the sur ace, but it is u sure i acetate dissi i ati si i ica t y e ceed the rate CO2/ 2 reducti , because 2 pr ducti is the hi hest ear the sur ace as we . Despite that this p i t is t we d cu e ted i the iterature, because the u certai ties a d p te tia arti acts ass ciated with the 14C-tracer acetate tur er easure e ts, s e e ide ces, a ri the p i t that acetate dissi i ati is re ati e y re i p rta t i the 13 sur icia sedi e ts, c es r C e peri e ts. Na e y, the si i ar situati was c ear y bser ed i paddy s i -water i cubati studies, a d the 13 a ue was a use u i dicat r r assessi the c tributi acetate er e tati t the t ta pr ducti etha e: the hi h 13C 4 a ues c rresp ded t a hi her c tributi the acetate pr cess (Su i t a d ada 1993). PRO ILES ANAL ED e specu ate that the i put resh r a ic atter i t sedi e ts, i the e d su er, c u d s i ht y e ha ce the pr ducti acetic acid a d pr ide the hi her 13C a ues r etha e. C se ue t y, the ate su er/ear y autu etha e c u d sh w the re p siti e 13C a ue i the a ua cyc e. I act, hi hest 13 a ues ( i . 4a) a d isua y ud ed hi hest etha e pr ducti were bser ed duri ate su er a d ear y autu . Abu da t bubb e etha e is easi y a d e icie t y btai ed by i ited stirri sedi e t duri su er, whereas w a u ts bubb e etha e are btai ed i si i ar c diti s by e te si e stirri sedi e ts duri wi ter. This bser ati c rre- M. ORION DR SE , S. A AS, T. PIE OS ates we with a ua s ebu iti (Marte s et a . 198 , Cha t a d Marte s 1988, Burke et a . 1988, drysek et a . 1994, edrysek 199 ) a d te perature seas a s ( i . 2a). B th ebu iti a d te perature are the west duri wi ter a d the hi hest duri su er. This resu t is caused pr bab y by the act that etha e is ess s ub e at wer te perature (Cha t et a . 1992) a d by a ishi y w pr ducti etha e duri wi ter ( drysek 199 ). I as uch as ri i e etati acr phytes is ike y t be critica i a ecti etha e esis (e. . erard a d Cha t 1993), because partia c su pti etha e by idati ca si i ica t y shi t hydr e a d carb is t pic rati s p siti e y i the residua etha e ( yaku et a . 19 9, Barker a d ritz 1981, C e a et a . 1981). r this reas i ur sa p i stati s sub er ed r e er ed acr phytes were prese t withi se era eters. Therere, the decrease i 13 with i creasi depth i sedi e ts ( i . 4ab) was p ssib y caused either by acti e etha e c su pti c se t the sur ace a d/ r by hi her c tributi acetic acid er e tati ear the sur ace ayers a d a re ati e y reater c tributi by the CO2/ 2 reducti i deeper parts sedi e ts. we er, a ic c diti s were bser ed ust se era ce ti eters be w the water-sedi e t i ter ace, a d the su ate c i p re waters was c se t zer ( drysek 2005b). Thus, atter pr cess, reater c tributi by the CO2/ 2 pathway i deeper parts sedi e ts, is ike y e phasized here, si ce the p siti e depth- 13C c rre ati i sedi e ts c u d t p ssib y be a resu t aryi de rees bacteria idati trapped etha e. N ethe ess, despite a aer bic c diti s, idati sh u d t be e ected, a d there re re acts sh u d be c sidered. It c cer especia y re ati s etha e c a d 13 a ue. Decrease i etha e c i e era d es t c rre ate t 13 a ues ( i . 5ab) a e ati e c rre ati sh u d be bser ed i idati was the d i a t act r c tr i 13 C a ue. O the ther ha d, tw pr i es 93.05.01 a d 94.02.11 sh w si i ica t e ati e c rre ati ( i . 5a) which ay su est appare t idati e ect. we er, these tw pr i es are c tradicti e. Na e y, i the pr i e 94.02.11 appare t y the st idized etha e (hi h 13C a ue) c rresp ds t the deep part the pr i e, but i the pr i e 93.05.01 appare t y the st idized etha e (hi h 13C a ue) c rresp ds t the sur icia part the pr i e. It w u d i p y that idati has re ati t depth i the sedi e ts which, the ther ha d, is crucia r idati p te tia , su ate c etc. Additi a y, the e tre e y ar e s i the 13C a ues i the pr i e 93.08.30 d es t c rresp d t a y re arkab e i the C 4 c ( i . 5a). M reer, a e ati e c rre ati i the CO2-C 4 syste sh u d be bser ed i idati was i p rta t si k etha e, but c trary, a p siti e c rre ati ( i . b) r c rre ati has bee bser ed ( i . a). CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE FIG. 5a. C rre ati 13 i the Lake M sz e sedi e ts. FIG. 5b. C rre ati c the Lake Skrzy ka sedi e ts. a d M. ORION DR SE , S. A AS, T. PIE OS FIG. 6a. C rre ati c CO2 i the Lake M sz e sedi e ts. bubb e FIG. 6b. C rre ati c CO2 i the Lake Skrzy ka sedi e ts. bubb e CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE FIG. 7a. C rre ati M sz e sedi e ts. O2 i the Lake FIG. 7b. C rre ati Skrzy ka sedi e ts. O2 i the Lake M. ORION DR SE , S. A AS, T. PIE OS FIG. 8a. C rre ati a d te perature sedi e ts i Lake M sz e. FIG. 8b. C rre ati Skrzy ka. a d te perature sedi e ts i Lake CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE we er, i Lake M sz e, a i crease i CO2 c i bubb es r y p siti e y c rre ate with 13 a ues ( i . a). M re er, the su er pr i e 93.0 .1 ( i . a), a d especia y pr i es the e d the su er i.e. 93.08.30 ( i . a) a d i Lake Skrzy ka the pr i e 93.09.08 ( i . b) sh w a p siti e c rre ati i the CO2- 13 syste . This is i a ree e t with a e pected e ect etha e idati as i p rta t act r c tr i 13 C etha e. we er, the sa e pr i es are discussed be w, as it sh ws a p siti e c rre ati i the te perature- 13 syste ( i . 8ab) a d as it was pr ed ab e, etha e i these pr i es has t bee idized. M re er, i c trast t Lake Skrzy ka ( i . b), besides the e ti ed ab e pr i es, a p siti e c rre ati i the CO2- 13 syste , i Lake M sz e, is bser ed ( i . a). This syste see s rather c p e , the DIC p is re ati e y ar e, a d a y pr cesses, t re ated t etha e esis, are resp sib e r carb cyc i i the ake sedi e ts. Thus, pr bab y ther act r(s), c i cide ta y acti i the sa e directi , c u d be resp sib e r this CO2- 13 c rre ati . Pr bab y te perature c u d be the crucia act r, as the wi ter a d autu pr i es sh w e ati e r CO2- 13 c rre ati ( i . a). I su ary, 13 we su est that the C-dep eted etha e at depth i ht re ect a reater c tributi etha e esis ia the carb di ide reducti pathway. Cha es i the re ati e rates etha e-pr duci pathways are uch re pr bab e tha idati , a d sh u d be e pected. Na e y, a ter the acetate reeased i the sha wer sedi e ts was e hausted thr u h etha e pr ducti , etha e esis c u d sti pr ceed i the deeper ayer, usi CO2 deri ed r r a ic a d i r a ic s urces. Resu ts btai ed by Su i t a d ada (1995) c i ce that i c trast t acetate i reshwater sedi e ts, at depth, the hydr e substrates r CO2 reducti are sti prese t whe the easi y de raded ra ic c p u ds (acetate precurs rs) ha e bee practica y uti ized. ere, a i p icit assu pti c u d be a s ade that acetate di usi withi the atura e ir e t was e i ib e, s that a acetate pr duced withi a i e stratu was i ediate y c su ed by reacti such as C 4 er e tati , su ate reducti , s rpti r ther pr cesses (S re se et a . 1981, Christe se 1984, Miche s et a . 1989, drysek 2005a). Sebacher et a . (198 ) u d that etha e u r A aska wet a ds did t c rre ate we with peat thick ess. It w u d be w rth t e ti that this i di was c siste t with ur bser ati s, based isua ud e t ade i this study, a d pr bab y resu ts r the act that the der (deeper) sedi e ts are t as pr ducti e i ter s etha e as the y u er e. I the M sz e Lake sedi e ts, it has bee bser ed that ai y the t p 23 eters r a ic rich sedi e ts pr duced C 4, a d be w 1.5 the a u t as bubb es reeased r sedi e ts dra atica y decreased. Ob i us y, bubb e i e t ries wi atura y decrease with depth as the sedi e t c pacts a d bubb es are rced upward. O the ther ha d, hi her pressure at depth i creases ar i p M. ORION DR SE , S. A AS, T. PIE OS e t ry the sedi e t i terstices. we er, a y c rrecti s r this act r are ar bey d the sc pe this w rk, as the ai p i t here are s the 13 12 C/ C rati i etha e. A yway, i 94.02.11 isua y ud ed hi hest pr ducti etha e was at the depth ab ut 1 , a d it was ery i ited i the sur icia z es where the te perature was ab ut 2 C ( i . 2a). M st pr bab y the te perature i the upper i ter a was t w t de e p a acti e etha e esis. Pr i es 94.02.11 a d deeper parts 93.11.14 a d 93.08.30 pr i es, sh w e ati e 13 -depth c rre ati ( i . 4a). The seas a i ertica pr i es the 13 a ues i Lake M sz e ( i . 4a) d t a ways c rre ate we with the c rresp di seas a te perature i sedie ts ( i . 2a), h we er, a e era tre d p siti e c rre ati te perature sedi e ts a d 13C a ues ha e bee bser ed i the tw akes studied ( i . 8ab). I e era , the c rre ati i the te perature- 13 syste is bser ed y whe we c sider a resu ts r se era sa p i acti s, but t i a separate pr i e ( i . 8a). The e cepti is the su er pr i e 93.0 .1 ( i . 8a), a d especia y pr i es the e d the su er i.e. 93.08.30 ( i . 8a) a d 93.09.08 ( i . 8b). I Lake M sz e the d w ward si i ica t i crease i te perature c rresp ds t a e i ib e d w ward decrease i 13 a ues i the upper st part the 93.11.14 13 pr i e ( i . 13 2a, 4a). The te perature a d a ue aries i the sa e directi . I the deeper part the sa e pr i e, the d w ward a ishi y s a decrease i te perature c rresp ds t the d w ward re arkab e i crease i 13 a ues. I this case, the te perature a d 13 a ue aries i the pp site directi s. O the ther ha d, the d w ward i crease i the te perature sedi e ts i 94.02.11 c rresp ds t d w ward i crease i 13 a ues. The te perature a d 13 a ue a ai cha es i the sa e directi . The 93.05.01 te perature pr i e sh ws, i the i ter a 0 t ab ut 0.8 , a d w ward decrease, a d be w ca. 0.8 , d w ward i crease te perature, but the 13 a ue i this pr i e sh ws y a d w ward decrease, b th ab e the 0.8 a d be w 0.8 . There re, te perature a d 13 a ues ary i depe de t y. e ce pr bab y direct re ati e ists te perature a d 13 a ues. we er, e re case c u d be c sidered. Shi ts tw separate 13 te perature pr i es a d the tw c rresp di C pr i es are i c siste t. r e a p e, the te perature pr i e 93.0 .1 is ery c se t the 93.08.30 13 pr i es ( i . 2a the ri ht side the p t) but the c rresp di C pr 13 i e 93.0 .1 is ery c se t the C pr i es 93.05.01, 92.09.2 a d e e 94.02.11 ( i . 4a the e t side the p t). It c tradicts t the i p rta ce 13 te perature as a act r c tr i a ue i ertica pr i es i sedi e ts. Thus, a ther echa is tha te perature , pr bab y direct y i ue ces the bser ed is t pic patter . CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE At hi her te perature su er the rate dec p siti r a ic atter i te perate c i ate is appare t y hi her tha duri c der seas s. The sedi e ts studied are c p sed st y r a ic detritus. Te perature the Lake M sz e sedi e ts aried r 2 C duri wi ter t 18 C duri su er. Thus, i the sur icia ayers the sedi e ts i the akes studied, CO2 a d acetic acid, a d i the deeper re i s st y CO2, appare t y are pr duced st e icie t y at the e d su er whe i the wh e pr i e te perature is the hi hest. There re, duri this seas the p rewater is saturated with respect t etha e precurs rs. It was bser ed by Cha t a d Marte s (1988) that, due t te perature-c tr ed s ubi ity a d te perature-depe de t di usi etha e, i e t ries sedi e tary as bubb es were se era ti es hi her duri su er tha i wi ter. Thus, the bser ed i Lake M sz e re i te si e bubb e pr ducti a d hi her 13 a ues i the su er as c pared t th se i wi ter, were the resu t t y re i te si e bacteria acti ity at hi her te perature but a s i ited di usi at hi her te perature. O the ther ha d, it ca be e pected that te perature decreases resu ts i wer c etha e precurs rs with st pr bab y si i ica t is t pe e ect. Acetate tur s er s rapid y (days) that at the e d the wi ter, there sh u d be a ishi y w residua p e t er r war er seas s. Likewise, despite that the CO2 (bicarb ate) p is re ati e y ar e, it ay be i ited i the deepest part the sedi e t, where the sedi e t is re c pact a d bacteria idati is appare t y suppressed due t wer te perature. e ce, the hi hest 13Ce rich e ts were bser ed i the deepest parts the wi ter a d ate autu pr i es. This de ay a s e p ai the wer decreasi radie ts the 13 a ues at reater depths (93.05.0 , 93.0 .1 a d 93.08.30). Likewise, the surprisi i crease the 13 a ues i the deepest part (be w 3 ) the 93.08.30 pr i e ay be e p ai ed by the i ited p CO2 at this depth, acti e etha e esis, a d wer di usi . There re, it ca be pr p sed that, the deeper seated CO2 ets is t pica y hea y as re C 4 is pr duced due t CO2 pathway, a d c se ue t y C 4 ets hea ier t . he s e 13Ce riched CO2 a d C 4 di use upwards it ay resu t 13C-e rich e t i the carb p i the er yi e e s. we er, uch re studies w u d be re uired t this p i t. I the ater sta e dia e esis, acetate a d CO2 ay ri i ate r di ere t c p u ds represe ti di ere t is t pic rati s, supp sed y e riched i hea y carb is t pes. Thus, the ertica i 13 t y re ects the acetate/carb di ide pathways a d ki etic e rich e t i 13C the residua precurs rs etha e, but a s the is t pe characteristics the precurs rs acetate a d carb di ide. urther studies wi be re uired this p i t t . 2Particu ar y the s i the CO2/ CO3 /CO3 ar rati s due t i creasi pressure d w ward withi the sedi e t, te perature a d p a d their p te tia i ue ce the 13C/12C is t pic rati s i the reduced CO2 (the etha e precur- M. ORION DR SE , S. A AS, T. PIE OS s r) sh u d be c sidered. Such studies c u d pr ide a s a i p rta t basis which a pa e e ir e ta rec structi based ertica s carb is t pe c p siti carb -beari c p u ds sedi e ts ( r a ic atter, carb ates) ca be de e ped. 5. CONCLUSIONS 1. I reshwater sedi e ts, isua y ud ed etha e pr ducti decreased with i creasi depth i sedi e ts a d radua y ceased at a depth ab ut 23 eters. I the sedi e ts studied, be w ab ut 3 , substa tia a u ts etha e were pr duced r re eased duri su er. The depth ear zer pr ducti r re ease was ab ut 2 duri wi ter. There re, etha e u ay t c rre ate with sedi e t thick ess, i the sedi e ts i the prese t ie ds are uch re tha 3 i thick ess. 2. I the sedi e ts studied, te perature a d idati are, i e era , t the act rs direct y resp sib e r the is t pic si ature etha e. 3. It is pr p sed that the CO2/ 2 pathway beca e re i p rta t with i creasi depth i sedi e ts, a d etha e esis ia acetic acid er e tati decreased with i creasi depth i sedi e ts. At depths be w 1 the CO2/ 2 pathway e c usi e y d i ates. Pr bab y, ther pathways etha e esis, such as ia etha a d ethy a i es (which is e i ib e r the is t pic p i t iew) a s decrease with depth. S e idati etha e at sha wer depths c u d ccur but e era y it is t the pri ary reas r the bser ed patter . 4. Duri su er at the depth ab ut 3 a d duri wi ter i the e tire pr i e, the pr ducti etha e precurs rs pr bab y decreases t a ishi y w a ues. we er, because c ti ui etha e esis, a ki etic e rich e t i hea y is t pes the residua carb p is resp sib e r the bser ed radua d w ward decrease the radie t 13C is t pe dep eti etha e. i a y, this pr cess resu ts i d w ward i crease the is t pe rati s etha e at the depth ab ut 3 duri su er, a d be w the depth ab ut 1 duri ate autu -wi ter. AC NO LED MENTS The auth rs wish t e press their ratitude t M.S. i us, . S k wski, . pata, . dzie , a d R. Stry ecki r their he p with sa p i a d is t pe preparati s a d t T. Durakiewicz r his ki d he p with c ecti s e iterature. The auth rs are rate u r a critica readi the a uscript a d c e ts t Derek a d ey a d especia y t Dr. N. B air. CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE Tha ks are due t Pr ess r A ieszka a uszka, U ie ce, r care u re iew the sub itted ersi . This study was supp rted by the State C ittee r Scie ti ic Research, pr ect . 2PO4 04528 (P a d), ra ts S a d IN U r., a d IAI. RE ERENCES 1. 2. 3. 4. 5. . . 8. 9. 10. 11. 12. 13. 14. 15. 1 . Baker-B cker A., D hue T.M., a d Ma cy . . (19 ) Methane flux from wetland areas, Te us 29, 245-250. Barker .A. (193 ) On the Biochemistry of methane fermentation, Arch. Micr bi . 7, 420-438. Barker . . a d ritz P. (1981) Carbon isotope fractionation during microbial methane oxidation, Nature 293, 289-291. Be R. . (19 9) Studies on the decomposition of organic matter in flooded soils, S i Bi . Bi che . 1, 105-11 . Be er R., Maccubi A.E., a d ds R.E. (198 Anaerobic biodegradation of lignin polysaccharide components of lingocellulose and synthetic lignin by sediment microflora, App . E ir . Micr bi . 47, 998-1004. B air N.E. a d Carter R .D. (1992) The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment, e chi . C s chi . Acta 56, 124 -1258. Burke R.A., Marte s C.S., a d Sacket .M. (1988) Seasonal von of D/H and 13 12 C/ C ratios of microbial methane in surface sediments, Nature 332, 829-831. Cha t .P. a d Marte s S. (1988) Seasonal vons in ebullitive flux and carbon isotopic composition of methane in tidal freshwater estuary, ba Bi e che . Cyc es 2, 289-298. Cha t .P., Marte s C.S., e ey C.A., Cri P.M. a d Sh wers . . (1992) Methane Transport Mechanisms and Isotopic Fractionation in Emerged Macrophytes of an Alaskan Tundra Lake, . e phys. Res. 97, 1 81-1 88. Christe se D. (198 Determination of substrates oxidized by sulphate reduction in intact cores of marine sediments. Li . Ocea r. 29, 198-192. Cicer e R. ., Shetter .D., De wiche C.C. (1983) Seasonal von of methane flux from a California rice paddy, . e phys. Res. 88, 1022-11024. C e a D.D., Risatti .B., a d Sch e M. (1981). Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria, e chi . C s chi . Acta 45, 1033-103 . C rad R., a d Babbe M. (1989) Effect of dilution on methanogenesis, hydrogen turnover and interspecies hydrogen transfer in anoxic paddy soil, EMS Micr bi . Ec . 62, 21-2 . Crai ., a d Ch u C.C. (1982) Methane: the record in polar ice cores, ephys. Res. Lett. 9, 44 -481. Cri P.M. a d Marte s C.S. (198 ) Methane production from bicarbonate and acetate in an anoxic marine sediment, e chi . C s chi . Acta 50, 2089-209 . Dacey . . . (1981) How aquatic plants ventilate, Ocea us 24, 43-51. M. ORION DR SE , S. A AS, T. PIE OS 1 . Dacey . . ., a d u M. . (I9 9) Methane efflux from lake sediments through water lilies, Scie ce 203, 1253-1255. 18. a es L.M., ayes .M., a d u sa us R.P. (19 8) Methane-producing bacteria: natural fractionations of the stable carbon isotopes, e chi . Cas chi . Acta 42, 1295-129 . 19. erard . a d Cha t . (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits, Bi e che istry 23, 9-9 . 20. a as S. (19 9) An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer, . Phys. E.: Sci. I str. 12, 418-420. 21. a as S., a d Sk rzy ski . (1980) An inexpensive device for digital measurements of isotopic ratios, . Phys. E. : Sci. I str. 13, 34 -349. 22. arriss R.C. a d Sebacher D.I. (1981) Methane flux in forested freshwater swamps of the southeastern United States, e phys. Res. Lett. 8, 1002-1004. 23. arriss R.C., Sebacher D.I., a d Day R. .P. (1982) Methane flux in the Great Dismal Swamp, Nature 297, 3- 4. 24. ea O. . a d I es P. (198 Carbon and energy flow in terrestrial ecosystems: relevance to microflora, i : K u M. ., a d Reddy C.A. (eds.), Current Perspectives in Microbial Ecology, A er. S c. Micr bi ., ashi t DC, pp. 394-404. 25. drysek M.O. (199 Carbon isotope evidence for diurnal vons in methanogenesis in freshwater lake sediments, i : M.O. drysek (ed.), Extended Abstracts of Isotope Workshop II, 25-2 May 1994, Ksi Cast e, P a d., pp. 8., I ter ati a Is t pe S ciety a d U i ersity r c aw. 2 . drysek M.O. (1995) Carbon isotope evidence for diurnal vons in methanogenesis in freshwater lake sediments, e chi . C s chi . Acta, 59, 55 -5 1. 2 . drysek M.O. (199 ) Spatial and temporal vons in carbon isotope ratio of early-diagenetic methane from freshwater sediments: methanogenic pathways, Acta U i ersitatis Vratis a ie sis Prace e icz -Mi era icz e, (M raph), . 3, pp. 1-110. 28. drysek M.O. (2005a) Depth of the water column in relation to carbon isotope ratios in methane in freshwater sediments, e ica Quartere y, 49 (2), 151-1 4. 29. drysek M.O. (2005b) S-O-C isotopic picture of sulphate-methane-carbonate system in freshwater lakes. E ir e ta Che istry Letters 3 (, 100-112. 30. drysek M.O., a as S., ada E., S k wski K., i us M.S., Takai ., a d Radwa S. (199 Carbon isotope evidence for seasonal and spatial vons of methanogenesis during early diagenesis in freshwater lake sediments, Poland, i : M.O. drysek (Ed.) Extended Abstracts of Isotope Workshop II, 25-2 May 1994, Ksi Cast e, P a d., pp. 9- 3., I ter ati a Is t pe S ciety a d U i ersity r c aw. 31. drysek M.O., a as S., ada E., B prakup S., Ueda S., Vi ar s r P. a d Takai . (199 ) Early-diagenetic Methane from Various Tropical Freshwater Sediments: Molecular and Carbon Isotope Vons in One Dial Cycle, A . S c. e .P . 67, 93-101. 32. Khai M.A.K., a d Ras usse R. (1983) Sources, sinks and seasonal cycles of atmospheric methane, . e phys. Res. 88, 5131-5144. CARBON ISOTOPIC COMPOSITION O EARL -DIA ENETIC MET ANE 33. Ki .M., K u M. ., a d L ey D.R. (1983) Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine, App . E ir . Micr bi . 45, 1848-1853. 34. K ya a T, Nashi ura M., a d Matsuda 1-1. (19 9) Early diagenesis of organic matter in lacustrine sediments in terms of methane fermentation, e icr bi . . 1, 31 1-32 . 35. K ya a T. (1990) Gases in lakes, their production mechanism and degassing (CH4 and 1-12) of the Earth., i : Geochemistry of gaseous elements and compounds, Thephrastus Pub ishi Pr prietary C ., SA. (Let.), Athe s, pp. 2 1-335. 3 . Krzycki .A., Ke ea ky .R., De ir M. ., a d eikus . . (198 ) Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol and carbon dioxide-hydrogen, App . E ir . Micr bi . 53, 259 -2599. 3 . L ey D.R. a d K u M. . (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of an euthrophic 1akes, App . E ir . Micr bi . 45, 1310-1315. 38. Marte s C.S., B air E.N., ree C.D. a d des Marais D. . (198 ) Seasonal Vons in the Stable Carbon Isotopic Signature of Biogenic Methane in a Coastal Sediment, Scie ce 223, 1300-1303. 39. Mats M.D. a d Like s .E. (1990) Air pressure and methane fluxes, Nature 347, 18- 19. 40. Miche s A.R., ac bs M.E., Scra t , a d Macki .E. (1989) Modeling of distribution of acetate in anoxic estuarine sediments, Li . Ocea r. 34, 4 5 . 41. M re L.R. (19 9) Geomicrobiology and geomicrobiological attack on sediment organic matter, i : E i t ., a d Murphy M.T. . (eds.) Organic Geochemistry, Spri er, New rk, pp. 2 5-303. 42. Ore a d R.S., Marsi-i L.M., P ci S. (1982) Methane production and simultaneous sulphate reduction in anoxic salt marsh sediments, Nature 296, 143145. 43. Patters .A. a d espe R.B. (19 9) Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Curr. Micr bid. 3, 9-83. 44. Sebacher D.I., arriss R.C., a d Bart ett K.B. (1983) Methane flux across the airwater interface: air velocity effects, Te us 35B, 103-109. 45. Sebacher D.I., arriss R.C., a d Bart ett K.B. (1985) Methane emission to the atmosphere through aquatic plants, .E ir . Qua . 14, 40-4 . 4 . Sebacher D.I., arriss R.C., Bart ett K.B., Sebacher S.M., a d rice S.S. (198 ) Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and subarctic boreal marsh, Te us 38B, 1-10. 4 . S re se ., Christe se D., a d r e se B (1981) Volatile fatty acids and hydrogen as substrates of sulphate reducing bacteria in anaerobic marine sediments, App . E ir . Micr bi . 42, 5-11. M. ORION DR SEK, S. A AS, T. PIE KOS 48. Stee e L.P., raser P. ., Ras usse R.A., Kha i M.A.K., C wat T. ., a d Th i K. . (198 ) The global distribution of methane in the troposphere, . At s. Che . 5, 125-1 1. 49. Su i t A. a d ada E. (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and CO2/H2, e chi . C s chi . Acta 57, 4015-402 . 50. Su i t A. a d ada E. (1995) Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation, e chi . C s chi . Acta 59, 1329-133 . 51. S e s B . a d R ssewa T. (198 In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire, Oik s 43, 341-350. 52. Takai . (19 0) The mechanism of methane fermentation in flooded paddy soil, S i Sci. P a t Nutr. 6, 238-244. 53. ada E. (1990) Carbon isotopic studies of global methane production with emphasis on paddy fields, i : Course-book of Isotope Geology (ed. M.O. drysek), pp. 141-149, r c aw U i ersity a d C ittee Mi era Sci. 54. ei er P. . a d Zeikus . . (19 8) Acetate metabolism in Methanosarcina barkeri, Arch. Micr bi . 119, 1 5-182. 55. etze R. . (19 5) Limnology, Sau ders, Phi ade phia. 5 . hiticar M. ., aber E., a d Sch e M. (198 ) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation: Isotope evidence, e chi . C s chi . Acta 50, 93- 09. 5 . hiti . . a d Cha t .P. (1993) Primary production control of methane emission from wetlands, Nature 364, 94- 95. 58. i at T., Micha czyk Z., Turczy ski M., a d ciech wski .K. (1991) The cz a dawa Lakes, Studies D cu e tati Ce ter Physi raphy, . I ., Zak ad Nar d wy i . Oss i skich, r c aw arszawaKraków, P ish Acade y Scie ces. 59. te ate I., hiticar M. ., a d Sch e M. (198 Carbon and hydrogen isotope composition of bacterial methane in a shallow freshwater lake, Li . Ocea r. 29, 985-992. 0. Zi d er S. . a d Br ck T.D. (19 8a) Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaerobic lake sediments, Nature 273, 22 -228. 1. Zi d er S. . a d Br ck T.D. (19 8b) Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments, App . E ir . Micr bi . 35, 344-352. 2. Zyaku A.M., B dar V.A., a d Nas araye B.B. (19 9) Fractionation of stable carbon isotopes of methane in process of microbiological oxidation, e khi iya, pp. 29 -29 .
Annales UMCS, Physica – de Gruyter
Published: Mar 1, 2015
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.