Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Elastic Constants of Tetragonal Cu2ZnSnS4 Semiconductor: AB-Initio Calculation

Elastic Constants of Tetragonal Cu2ZnSnS4 Semiconductor: AB-Initio Calculation AbstractIn this work, an ab-initio calculation is used to investigate the elastic constants and some other mechanical and thermal parameters of tetragonal Cu2ZnSnS4 (CZTS) quaternary semiconducting bulk material in Kesterite (KS) and Stannite (ST) phases. The Quantum Espresso code within the Ultra Soft pseudo potentials (USPP) and the local density approximation (LDA) approach were used in the calculation. Firstly,, studies are started with the prediction of the elastic stiffness constants Cij and the normal and shear anisotropy factors. Then some other mechanical moduli, especially the isotropic bulk modulus B, the shear modulus G, the Young modulus E, the Poisson’s ratio ν, and the Pugh’s criteria (G/B) are delivered. The analysis of the mechanical stability criteria at equilibrium shows that our elastic stiffness constants Cij of CZTS material obey all the stability conditions. Additionally, some other parameters of the CZTS semiconductor, especially: the Vickers hardness HV, the sound velocity, the Debye temperature θD and the melting temperature Tm were also calculated. The obtained values of the elastic constants Cij and other mechanical and thermal parameters agree well with experimental and other theoretical results of the literature. The Debye temperature θD of the KS phase was found at around 332.7 K, and that of the stannite phase was found equal to 329.1 K, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of West University of Timisoara - Physics de Gruyter

Elastic Constants of Tetragonal Cu2ZnSnS4 Semiconductor: AB-Initio Calculation

Loading next page...
 
/lp/de-gruyter/elastic-constants-of-tetragonal-cu2znsns4-semiconductor-ab-initio-xbqZpHVYOe

References (21)

Publisher
de Gruyter
Copyright
© 2022 L. Boutahar et al., published by Sciendo
ISSN
1224-9718
eISSN
2784-1057
DOI
10.2478/awutp-2022-0004
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this work, an ab-initio calculation is used to investigate the elastic constants and some other mechanical and thermal parameters of tetragonal Cu2ZnSnS4 (CZTS) quaternary semiconducting bulk material in Kesterite (KS) and Stannite (ST) phases. The Quantum Espresso code within the Ultra Soft pseudo potentials (USPP) and the local density approximation (LDA) approach were used in the calculation. Firstly,, studies are started with the prediction of the elastic stiffness constants Cij and the normal and shear anisotropy factors. Then some other mechanical moduli, especially the isotropic bulk modulus B, the shear modulus G, the Young modulus E, the Poisson’s ratio ν, and the Pugh’s criteria (G/B) are delivered. The analysis of the mechanical stability criteria at equilibrium shows that our elastic stiffness constants Cij of CZTS material obey all the stability conditions. Additionally, some other parameters of the CZTS semiconductor, especially: the Vickers hardness HV, the sound velocity, the Debye temperature θD and the melting temperature Tm were also calculated. The obtained values of the elastic constants Cij and other mechanical and thermal parameters agree well with experimental and other theoretical results of the literature. The Debye temperature θD of the KS phase was found at around 332.7 K, and that of the stannite phase was found equal to 329.1 K, respectively.

Journal

Annals of West University of Timisoara - Physicsde Gruyter

Published: Dec 1, 2022

Keywords: Ab-initio calculation; Elastic constants; Cu 2 ZnSnS 4 material; Quantum Espresso code

There are no references for this article.