Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThis paper presents a parallel approach to the Levenberg-Marquardt algorithm (LM). The use of the Levenberg-Marquardt algorithm to train neural networks is associated with significant computational complexity, and thus computation time. As a result, when the neural network has a big number of weights, the algorithm becomes practically ineffective. This article presents a new parallel approach to the computations in Levenberg-Marquardt neural network learning algorithm. The proposed solution is based on vector instructions to effectively reduce the high computational time of this algorithm. The new approach was tested on several examples involving the problems of classification and function approximation, and next it was compared with a classical computational method. The article presents in detail the idea of parallel neural network computations and shows the obtained acceleration for different problems.
Journal of Artificial Intelligence and Soft Computing Research – de Gruyter
Published: Mar 1, 2023
Keywords: feed-forward neural network; neural network learning algorithm; Levenberg-Marquardt algorithm; QR decomposition; Givens rotation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.