Access the full text.
Sign up today, get DeepDyve free for 14 days.
l ee C e e ee leel e e ee el e ee e e ee T e e e e l l e e l e e e l l e e e e l l C e e e e e e e e e e e l e ll l l e e ll ll lll e e e e e e e l ll le T e e e e e e e e l e e e l e A ll e el T l ee e e ee l le e e e e e e ee e l T e l l e e e e e e Keywords el le l ll . SIELE IESIU A. O ACIU 1. INTRODUCTION Ci ca i hyth s in eu a y tic gis s a e gene ate y special ti s in t sc ipti n egulati n net s. The st i p tt these ti s a e cl se negati e ee ac l ps. T sc ipti n a gene in such a l p gi es RNA, h se t slati n p uces a p tein. The p tein un e g es a nu e t s ati ns ec es the ep ess its n gene. The sche e this in c als in a chain en y atic eacti ns, i the en p uct the chain inhi its en y e cataly ing ne the i st eacti ns. As a atte act, this syste , n n as in s scillat , as iginally applie t en y atic eacti ns in 1966 . In the si plest a it, the syste c nsists ne c pe ati e p cess t sc ipti n, all ste ic en y e, e e ecept se e al eacti ns ith the linea n lecula inetics. The syste s hich gene ate scillati ns in vivo ha e e c ple st uctu e l a et al. 2010, eng La a 2012, Dunlap 1999, Al n 200 . Ci ca i cl , as a ule, c ntain inte l c e negati e p siti e ee ac l ps Saith ng et al. 2010 . The e istence scillati ns thei pe i a e ete ine y the negati e ee ac l p. On the the h , the p siti e ee ac l p c t s e eg ee i y the pe i , a plitu e ustness the scillati ns. It c e en ully a p the scillati ns in s e special cases. e c nsi e a hyp thetical syste t genes h se t sc ipti n is g e ne y the sa e t sc ipti n act s. One these genes enc es a p tein hich c ec e a ep ess . The the gene enc es a p ecu s p tein the acti at . T sc ipti n th genes is p ssi le p i e that the c ncent ati n the ep ess is su iciently l the c ncent ati n the acti at is su iciently high. the ie p int athe atical eling, the essential eatu e the syste is l gic the c upling et een the ep ess acti at ee ac l ps. The l gical c n uncti n ep essi n acti ati n ught t e satis ie t sta t t sc ipti n. Si ulte us t sc ipti n y genes, in uce y c n act s, ccu s in p a y tic eu a y tic cells. In lact se pe n Escherichia coli the sa e p te pe at c nt l t sc ipti n p lycist nic genes enc ing th ee p teins gg 2005 . lycist nic genes RNA a e uite usual phen ena in acte ial pe ns. In eu a y tes, as a ule, the syne p essi n p teins ucti ning in the sa e p cess is c inate y t sacting act s Nieh s llet 1999 . The alte nati e splicing p e- RNA a es it p ssi le t tain t i e ent p teins n the asis the sa e t sc ipt. In such a case, e p essi n these p teins is in uce in the sa e p te Ma e ca , en- eng Chen E e y 2004 . B th echis s ccu in ci ca in cl Rippe ge B n 2010, Steige ste 2011 . IT COMMON... The syste is ep esente in u el y a set ina y i e ential e uati ns. Linea sta ility alysis Nay eh Balach a 1995 nu e ical s luti ns e e use as t ls in u sea ch. e t ie t ete ine h the phase p t ait the syste epen s n pa a ete s. e ha e un gene al elati ns et een pa a ete alues hen the nu e e uili iu p ints as chge in a sa le-n e t sc itical i u cati n. The c n iti ns the p i u cati n ha e een un in a less gene al in a e special, sy et ical, cases. 2. STRUCTURE O T E S STEM D ITS MAT EMATICAL MODEL e iscuss a speci ic hyp thetiyste hich c ul egulate e p essi n genes. The syste c ntains t genes hich a e t sc i e si ulte usly. Thei t sc ipti n is egulate y t t sc ipti n act s, ep ess acti at . The t sc ipti n is g ing n hen c ncent ati n the ep ess is l c ncent ati n the acti at is su iciently high. Such elati ns et een t c ipti ns the t genes c e eali e y a c n p te in e t e aly si pli ie el, as in ig. 2.1. ualitati ely, the sa e situati n is e in ci ca i syste s y E- es, hich a e acti ate y acti at . In such a case, a ep ess inte acting ith the acti at p e ents its inte acti n ith E- . T p teins enc e in the egulate genes un e g y t s ati ns ith the t sc ipti n act s as en p ucts. The syste is ep esente y a sche e in ig. 2.1 a set q ina y i e ential e uati ns 1 . Ou el is c nsistent ith highly si pli ie sche es the a ali ci ca i cl c p esente y l a et al. 2010 , ig.1 y Oste 2010 , ig. 5. . X1 -Xp GR GA Xp+1 Xq FIG. 2.1. Sche e the egulat y syste . A gene the acti at . p te , R gene the ep ess , dx1 dt dxi dt dx p dt dx j dt axqn 1 x m 1 xqn p hi 1 xi k1 x1 , 2,..., p, k p 1 xp 1 , p 2,..., q. ki xi , i bxqn 1 x m 1 xqn p hj 1 x j k j xj , j In e uati ns 1 , xp xq a e c ncent ati ns the ep ess acti at especti ely. The a ia les x1 xp+1 a e c ncent ati ns RNA enc ing ep ess s acti at s p ecu s s. The est a ia les e e t c ncent ati ns t sient s the p teins. E uati ns ith in ices 1 p+1 c esp n t RNA synthesis ecay. e use i ensi nless a ia les. The unit alue the i st p a ia les s the ep ess c ncent ati n hich e uces the ate t sc ipti n t the hal its alue in the ep ess a sence. The unit alue the a ia les xp+1 ...xq c esp n s t such acti at c ncent ati n at hich the ate t sc ipti n ec es e ual t the hal its a i u alue. ill s c e icients c pe ati ity the ep ess acti at a e especti ely m n. The ki hi a e ate c nstts. The c nstts a b a e a i u ates t sc ipti n at the st a a le c n iti ns xp . q The syste s p siti ely in a it at p siti e alues the ate c nstts. I all the a ia les ha e n n-negati e initial alues then they ill est n nnegati e u ing the e luti n the syste . In sea ching e uili iu p ints, all the a ia les e cept xp xq c e eli inate . C n iti ns e uili iu c e gi en the ll ing shape 2 : ay n 1 y n he e x y a e e uili iu alues x, by n 1 y n xp xq especti ely. y, p 1 q IT COMMON... ki hi p 1 q 1 ki hi p 1 E uili iu alues the e aining a ia les a e xj j q j ki x, 1,...., p 1, hi ki xj j 1 q j y, 1,...., q hi E uati ns 2 ha e ne i us s luti n x y 0 . It es, in ie , that the igin phase c inates is e uili iu p int the syste 1 . It ll s 2 that the nu e e uili iu p ints thei c inates epen s n t pa a ete s A a / B b / , hich a e si ple uncti ns the 2q ate c nstts. ssi le e uili iu p ints ey n the igin c e un e uati ns 2 in the ll ing 4: By n 1 1 y n 1, B x. A ial e uati n E uati ns 4 c e e uce t the e ui alent p lyn Bn xm In the case x m Bn xn AB n x n 4' n=1, the e uati n 4' takes the shape: Bx m Acc p siti e nu e Ax m Bx A1 B ing t Desca tes ule, it has then ne B>1 n ne B<1 eal t. S , at n=1, the syste 1 has ne t e uili iu p ints. The e uili iu p ints ith n n-negati e phase c inates is chge th ugh t sc itical i u cati n at B=1. In the case , the e a e tw sign chges in the p lyn ial 4' it c ha e tw n ne p siti e ts. The syste c ha e ne, tw th ee e uili iu p ints. The nu e e uili iu p ints chges ne t th ee in a sa le-n e i u cati n. Bi u cati nal alues the pa a ete s we will in using cha acte istic e uati n the syste . . C ARACTERISTIC E UATIONS O T E S STEM D T E NUMBER O E UILIBRIUM OINTS Tw e uati ns with in ices 1 p+1 the syste 1 ha e n nlinea uncti ns in thei ight h pa ts. Let us call these uncti ns f1 fp+1: f1 x1 , x p , xq fp x p , x p 1 , xq axqn 1 x m 1 xqn p bxqn 1 x m 1 xqn p k1 x1 , k p 1 xp w ite thei pa tial e i ati es 6 . g1, p g1, q gp gp f1 xp f1 xq fp n amx m 1 x p n 1 xq 1 2 , , , . n xq n 1 x m 1 x n bmx m 1 x 1, p xp fp p n 1 xq 1 2 n bnxq 1, q xq n 1 x m 1 x In ices in the le t pa t ac i the syste 6' . 6 e e t p siti ns pa ticula e i ati es in the IT COMMON... k1 h1 0 0 0 0 0 0 k2 hi 1 0 0 0 0 0 0 ki hp 1 0 0 0 g1, p 0 0 kp g p 1, p 0 0 0 0 0 0 kp 1 hj 1 0 0 0 0 0 0 kj hq 1 g1, q 0 0 0 g p 1, q 0 kq 6' i j ,..., p 2,..., q 1. the syste pp In a gene al case, the cha acte istic e uati n q 1 p 1 1 1 has the shape i 1i 1 uiui 11 p p 1 1 p p 11 g pp 1, qq g 1, h hii i i 11 u ui i gg1, p 1, p p p 1 i 11 hi i h ii p 1 ui qq1 1 1 1 gg p1,1, qg1,1,pp p q g ui u i whe e gp 1, q g1, q g pp 1, pp 1, 1, i i 1,1, i p p i hhi 0,0 i kiki the at i J 6' . As it ishes. ll ws 6 , the te is eigen alue g1, p g1, q g p q 1 1, , i p hi in the e uati n ith y n>1 all the e i ati es 6 a e e ual t e in the igin, cha acte istic e uati n appea s t e uite si ple s l a le in this e uili iu p int 8 . ki 0, ki , i 1,..., q. All eigen alues this p int e uili iu at igin is sta le at y e uili iu a e eal negati e. The eing ul alues pa a ete s. In the case n=1, g p 1, q b , g1,q=a. e c use e initi ns B gi e t the cha acte istic e uati n e uili iu shape 9. pa a ete s at igin the ki ki ki The e a e p negati e eigen alues i the e aining ki , i 1,..., p . All eigen alues ha e thei eal pa ts negati e at B<1, ne the ec es e ual t e at B=1 at least ne the is p siti e at B>1. N w n 1 , the e uili iu at igin is sta le at B<1 unsta le at B>1. The e is a t sc itical i u cati n at B=1. a iti nal p int e uili iu with p siti e c inates appea s e uili iu at igin ec es unsta le. In e t e a ine sta ility the e uili iu p ints ey n the igin, ne sh ul s l e e uati ns 2 4 , su stitute taine x y xp xq in 6 in eigen alues the esulting ac i. But, it is athe i p ssi le t tain a clea sy li luti n the enti ne e uati ns. Instea , we use e uati ns 2 t e p ess pa a ete s a b as uncti ns x y inse t taine e p essi ns int 6 . Ne t, we use esulting e p essi ns as especti e ent ies the ac i. Such a p ce u e esults in the ll wing cha acte istic e uati n 10 : ki n 1 yn i 1 ki ki mx m ki ki The e uati n is ali in the p ints e uili iu which a e situate ey n the igin c inates, x 0 y 0 , inclu ing n=1. e ha e n t use y a iti nal assu pti n in e i ati n the e uati n 10 . It is easy t in c n iti ns sa le-n e i u cati n using e uati n 10 . In the p int such i u cati n, at least ne eigen alues is e ual t e . ith , e uati n 10 is e uce t the elati n 11 : n 1 yn mx m This elati n c nstitutes the c n iti n which is t e satis ie y c inates e uili iu p int at a sa le-n e i u cati n. It c e w itten as a uncti n 12 : IT COMMON... n 1 1 m 1 n xm m ula 12 all ws us t calculate y a it a y ch sen alue x. Ne t, th x y c e use t calculate the pa a ete s A B acc ing t e uati ns 4 . In such a way, we c in at what alues A B the sa len e i u cati n takes place. A B nx 1 n 1 n xm 1 m xm n 1 , xm 1 1 n 2 1 n In 12 m xm e t get physically eing ul, p siti e, alues y, A B 1 , we sh ul c n ine u ch ice m, n x alues t : 0 xm n 1 , m 1 n m n 1 1. e c n w aw a pa a et ic pl t acc ing t 1 with the pa a ete x y pa ticula pai ill c e icients. The pl t w ul i i e the ple int a eas with ne th ee e uili iu p ints. It ll ws 14 that the e is n i u cati n with =0 at n=1 n n e alues a ia les. It will e use ul t int uce e c ple pa a ete s n , 1 yn In te s the pa a ete s sa le-n e i u cati n 11 s 16 1 : mx m . , cha acte istic e uati n 10 c n iti n tain s ewhat si ple e gene al ki ki ki ki ki we e , the new pa a ete s ha e a s all isa tage. A pai alues cha acte i es ne speci ic p int e uili iu , n t the wh le syste . Each pa ticula syste is ep esente in the ple y a nu e p ints e ual t the nu e e uili iu p ints. In y case the e is a p int 0, n c esp n ing t the p int e uili iu in the igin the phase c inates. unsta le sa le p int c e un at p int 1 . The thi e uili iu c e un at 1 . Aut scillati ns a un this p int c e gene ate a te a p ssi le p i u cati n. 4. OP BI URCATION D OSCILLATIONS IN T E S STEM 4.1. T E CASE O T E I EST S MMETR IT ALL KI=1 D Q=2P e c ul in c n iti ns p bi u cati n in the alytical elati ns nly in s e special cases. Let us c nsi e the syste satis ying tw essential li itati ns. Rate c nstts ecay ki all the a iables in the syste a e e ual t each the . The ep ess 's l p c nsists the sa e nu be substces as the acti at 's l p . The assu pti n that all ecay c nstts a e e ual t 1 will ake u calculati ns e si ple but it will n t ake the less gene al. Un e such assu pti ns the cha acte istic e uati n 16 a pts the si ple s l able 18 . The e a e p 19 ts -1. The e aining p eigen alues satis y the e uati n R, m R n. 19 In the case The ine uality in 19 ll ws ts the e uati n 19 R 1 all e initi ns Rp ha e negati e eal pa ts especti e p int e uilib iu is stable. At R=1, ne eal eigen alue ishes a sa le- n e bi u cati n takes place. ith R=1, the sec n pa t 19 , lea s t the elati n, which we ha e al ea y btaine in the ully gene al case 1 . IT COMMON... In the case negati e R, e uati n 19 c be gi en the The e uati n has R ts: i sin m. Rp 2j R p sin 2j j 0,1,..., p 1. Eigen alues with j=0 j=p-1 ha e the highest eal pa ts. The e uilib iu will be estabili e when the eal pa t these tw eigen alues bec es p siti e. It takes place at The case e uality in 2 gi es a elati n between the c e uilib iu p ints at p bi u cati n. inates np yn 1 m m n p 1 x p 1 . In e t btain eing ul alues y, pa a ete s inate x sh ul satis y the ll wing li itati ns: np x p 1 the syste the m n 1 mp 1 . p 1 m n p Let us n te that the p bi u cati n is p ssible when i e ence between ill c e icients ep essi n acti ati n e cee s a ce tain alue sh wn in the i st pa t 25 . The sa e alue b un e ill c e icient at p bi u cati n in a l p with ne ep esse gen In e ni i T eu 1991 , as well as a p uct ill c e icients all c pe ati e p cess in a single l p c ntaining y ep esse acti ate genes Sielewiesiuk paciuk 2012 . The elati n 24 is satis ie in e uilib iu p ints un e g ing a p bi u cati n. Using this elati n c n iti ns e uilib iu 2 we c e p ess pa a ete s as uncti ns x - ep ess 's c ncent ati n in e uilib iu 26 . nx 1 x m A np p 1 m p p p n p p n B np p 1 m n p p 1 n 1 n mp E uati ns 26 esc ibe a pa a et ic cu e which sepa ates in the ple the a ea with p ssible scillat y s luti ns the a ea whe e scillati n a e i p ssible. B 15 12.5 10 7.5 5 2.5 Aut scillati ns Bistable t igge One stable e uilib iu 0,0 FIG. 1. Pa a ete ple the syste with p, q, m, n = 10, 20, 4, 2 . L we cu e c esp n s t the sa le-n e bi u cati n, the uppe ne t p bi u cati n. IT COMMON... B 10 8 6 4 2 One unstable 0,0 ne stable e uilib iu One stable e uilib iu 0,0 Tw unstable e uilib iu Aut scillati ns. p ints. FIG. 2. Pa a ete ple the syste with p, q, m, n = 10, 20, 4, 1 . L we cu e c esp n s t the t sc itical bi u cati n, the uppe ne t p bi u cati n. Syste s with a c pe ati e n>1, ig. 1 n n-c pe ati e n=1, ig. 2 acti ati n ha e s e ualitati e si ila ities i e ences. Syste s b th the kin s ha e a p int e uilib iu at the igin c inates at y alues A B. Tw the , n n e , p ints e uilib iu appea th ugh sa le-n e bi u cati n in syste s with n>1, ne a iti nal e uilib iu appea s th ugh t sc itical bi u cati n when n=1. The e uilib iu at the igin is stable at all alues pa a ete s with n>1, but it bec es unstable B>1 with n=1. p bi u cati n takes place in b th the kin s acti ati n at su iciently high alues the pa a ete s A B. 4.2. REPRESSION D ACTIVATION LOOPS IT DI ERENT NUMBERS O ELEMENTS Let us c nsi e s e syste s with slightly l we sy et y, whe e the tw l ps c nsist i e ent nu be s p tein t s ati ns. As in secti n 4.1, we c ntinue t use all the ecay ate c nstts e ual t ne the cha acte istic e uati n 16 in the : In e t in alues the pa a ete s at p bi u cati n, we supp se a pu ely i agina y eigen alue i int uce a new c ple a iable z 1 z i sin with t 1 in 2 The substituti n the a iable z esults in e uati ns 29 : p sin p q sin q p p q sin q bi u cati nal alues the pa a ete s sin p sin 2 p sin q p q sin 2 p These elati ns all we us t c nst uct pa a et ic pl ts using as a pa a ete . Sets such pl ts a e sh wn in ig. in ig. 4 . In b th the igu es, the st aight line 1 c esp n s t p ints the sa le n e bi u cati n. At least ne eigen alue these p ints e uilib iu is e ual t e in all syste s un e c nsi e ati n. The e is at least ne eal p siti e eigen alue at 1 . The e aining cu es c esp n t e uilib iu p ints ha ing a pai c ple eigen alues with e eal pa t. Oscillati ns 14 FIG. 3. Cu es p bi u cati n in syste s ha ing ep essi n l p c nsisting p=10 eagents. Acti ati n l ps c ntain qeagents with q=14, 15, 16, 1 , 18, 19, 20, in the e the le t t the ight. Dashe line c esp n s t sa le-n e bi u cati n. IT COMMON... Nu e ical calculati ns we e ne the nu be eagents in the ep essi n l p p=10 that in the acti ati n l p is q-p. In the cases q-p= 4, 5, 6, , 8 9, the cu es en n the st aight line 1 with 0. As it was sh wn ea lie 2 , the st aight line p 1.651 2 c esp n s t bi u cati n in the st sy et ical syste with b th l ps e ual si es p=10 q-p=10 . Oscillati ns a e p ssible a un the e uilib iu p ints with +1 bel nging t the a ea bel w sa le-n e line t the ight the cu es p bi u cati n. Let us e in that y pa ticula syste has in the ple accessible a ea with m n . It is p ssible, at high n, that the cu e p bi u cati n es n t i i e the accessible ectgle m n int tw sepa ate pa ts. e a ple such situati n c be seen in ig. =14 15 n=2, whe e the e a e n stable scillati ns in spite e isting c ple eigen alues with p siti e eal pa t. The syste g es t the stable e uilib iu with e alues all a iables. It appea s that scillati ns a e i p ssible, when in ucti e l p is t sh t. FIG. 4. Cu es p bi u cati n in syste s ha ing ep essi n l p c nsisting p=10 eagents. Acti ati n l ps c ntain q-p eagents with q=25, 24, 2 , 22, 21, 20. Again, the st aight line c esp n s t sa le-n e bi u cati n. On the c nt a y, l ng l ps acti ati n n t supp ess scillati ns. e p esent in ig. 5 alues the pe i scillati ns btaine nu e ical s luti ns. The scillati ns ha e the highest e uency when the l p acti ati n is slightly l nge th the l p ep essi n . The pe i app aches a c nstt alue with inc easing nu be ele ents in the l p acti ati n. At q p. These c inates bi u cati nal cu es in igs intege ultiple p: e e t the p int which is c n all the 4. In cases l ng acti ati n l ps, when q is jp, j 2, ,... the sec n ne the tw e uati ns 29 is satis ie with y alue Substituti n these alues q int the i st e uati n 29 gi es elati n which sh ul be satis ie at p bi u cati n 2 j p IT COMMON... Relati n 2 is illust ate in ig. 6. The st aight line with ep uces e actly the c n iti n p bi u cati n in the st sy et ical syste s 2 . The biggest pa t FIG. 6. p bi u cati n cu es in syste s whe e q is intege ultiple The alues j a e sh wn at especti e st aight tlines. D tte line c esp n s t the sa le-n e bi u cati n the ple , c esp n ing t aut scillati ns, ha e the syste s with q=3 when the acti ati n l p is twice as l ng as the l p ep essi n. In the li it e y high alues j at e y l ng l ps acti ati n the uncti n 2 g es t the st aight line with in inite sl pe the e istence scillat y s luti ns es n t e epen n the pa a ete Relati ns btaine in the secti n 4.2. enable us t in e uilib iu p ints with a pai pu e i agina y eigen alues. In p bi u cati n, the eal pa t this pai c ple eigen alues sh ul chge its sign. e use nu e ical calculati ns checke in se e al cases that the chge sign es eally take place. Un tunately, we ha e n t un y clea p this chge in general case. In the case o , relations 22 e pression or the bi urcating pair o eigen alues: 23 i ply alytical sin . p In this case, the chge o the sign o at crossing bi urcational alue o - cur e 2 in Fig. 6 is e i ent. The characteristic e uation 27 has a relati ely si ple alytical solution also in the case o q=3p. The bi urcating pair o eigen alues is then gi en by 35 : sin . p The real part o 35 is icreasing unction o ishes at satis ying relation 32 with j=3 cur e 3 in Fig. 6 . So, it ust chge its sign by crossing this cur e. 4.3. REPRESSION D ACTIVATION LOOPS IT DIFFERENT RATE CONSTTS OF DECA Let us now consi er the syste whose both loops consist o the sa e nu ber o ele ents , but they i er in the rate o ecay o their reagents. e assu e that the constts ki in the repression loop i=1,..,p ha e the unit alue those in the acti ation loop are e ual to k. In such a case the characteristic e uation 16 c be written as: kp 1 Intro ucing into e uation 36 allows us to e press 2 2 para eters as unctions o . Para etric plots show the alues o , which correspon to op bi urcation. The plots are presente in Figs 7 8. Oscillatory solutions are possible in areas below the straight line alues o higher th those in bi urcation cur es. All o the consi ere asy etrical syste s ha e the loop o repression consiste o 10 reagents ecaying with the rate constt e ual to 1. Their acti ation loops i er one ro other by nu bers o ele ents in the loops o acti ation or by the rate constts o ecay. There is ob ious ualitati e si ilarity between the syste s with elongate acti ation loops the syste s with slower ecay o reagents in these loops Figs 4 7 . Finite i aginary POSTITIVE D NE ATIVE FEEDBACK LOOPS IT COMMON... eigen alues appear on both si es o the straight line In spite o this act, oscillations aroun e uilibriu points with are i possible. All e uilibriu points ro this part o the ple ha e one real positi e eigen alue. E olution o the syste takes it away ro the icinity o such e uilibriu . Let us note that in both cases the turno er o acti ator is slower th that o the repressor. FIG. 7. Cur es or op bi urcation in the syste s with e ual nu ber o ele ents in both loops. Rates o ecay constts are e ual to unity in the loop o repression. The alues o ecay rate constts in the loop o acti ation are shown at cur es. FIG. 8. Cur es or op bi urcation in the syste s with e ual nu ber o ele ents in both loops. Rate o ecay constts are e ual to unity in the loop o repression. The cur es correspon s to ecay rate constts in the loop o acti ation k=2, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1. On the other h , bi urcational cur es o the syste s with shortene loops o acti ation are uch si ilar to those o the syste s with higher rate constts o ecay in these loops Figs 3 8 . The latter syste s ha e pure i aginary eigen alues only at At +1, i aginary eigen alue attains ero. Possible oscillations aroun the e uilibriu points with slightly lower th shoul ha e e tre ely low re uency. In this pair o asy etrical cases, acti ator's loop has shorter ti e o turno er th the repressor's loop. All bi urcation cur es in Figs 3, 4, 7 8 represent e uilibriu points with a pure i aginary eigen alue They ha e one co 1.65172 at p=10, =0. It c be in erre ro on point with relations 22 t p 23 that in this bi urcation point i aginary eigen alue oscillations with a perio T we c e pect 2 2 p . Nu erical solutions suggest that t / p this e aluation o the perio is better th those base on the actual i aginary part o co ple eigen alue. The turno er ti e o the repression loop is the ain actor eter ining the perio o oscillations. The acti ation loop with short turno er ti e e clu es oscillations or akes the slower. The slower acti ation loop has no signi ict in luence on the perio o oscillations. These rules are illustrate in Figs 5 9. Period of oscillations T Decay constts k in the loop of activator FIG. 9. Perio o oscillations obtaine ro nu erical solutions in syste s with 10 ele ents in both loops, ki=n the loop o repression, ki=k in the loop o acti ation, POSTITIVE D NE ATIVE FEEDBACK LOOPS IT COMMON... 5. CONCLUSIONS e consi ere a o el syste o gene e pression regulate by two trscription actors, repressor acti ator. e assu e that trscription o the gene takes place pro i e that the concentration o the repressor is low , at the sa e ti e, the concentration o the acti ator is high. Repression acti ation are both cooperati e processes with respecti e ill coe icients m n. igh alues o m pro otes oscillations high alues o n ake the less probable. Oscillatory solutions are possible when i erence m-n is su iciently high, see relation 25 . e intro uce para eters , unctions o coor inates o e uilibriu points, which enable us to eri e the characteristic e uation the sa le-no e bi urcation in a uite general way 16,17 . The op bi urcation was aly e in a ew special cases. Oscillations are generate in our syste by a negati e ee back loop o the oo win's type. A couple loop with positi e ee back oes not isturb oscillations when its turno er ti e is longer th the turno er ti e o the negati e ee back loop. Oscillations are slowe own or e en ully a pe , when the loop o acti ation has the turno er ti e shorter th that o the repression loop.
Annales UMCS, Physica – de Gruyter
Published: Mar 1, 2015
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.