Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

TG/DTG/DTA, FTIR and GC/MS Studies of Oil Sand for Artistic and Precision Foundry with the Emission of Gases Assessment

TG/DTG/DTA, FTIR and GC/MS Studies of Oil Sand for Artistic and Precision Foundry with the... References[1] McKinley, M.D., Lytle, C.A. & Bertsch, W. (1999). Pyrolysis of core resins used in Metalcasting. AFS Transactions. 107, 407-412.[2] Liang, J.J. & Tsay, G.S. (2010). Composition and yield of the pernicious and stench gases in furan sand model founding process. Sustainable Environment Research. 20(2), 115-125.[3] Grabowska, B., Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Kurleto-Kozioł, Ż. (2017). TGDTG- DSC, FTIR, DRIFT and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D) - new binder BioCo3. Journal of Casting&Materials Engineering. 1(1), 27-32.[4] Grabowska, B., Malinowski, P. Szucki M. & Byczyński, Ł. (2016). Thermal analysis in foundry technology. Pt. 1, Study TG-DSC of the new class of polymer binders BioCo. Journal of Thermal Analysis and Calorimetry. 126(1), 245-250.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000411160300030&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[5] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and Quantification of Gases Releasing From Furan No Bake Binder. Archives of Foundry Engineering. 16(3), 5-10.[6] Tiedje, N., Crepaz, R., Eggert, T. & Bey, N. (2010). Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds. Journal of Environmental Science and Health Part A. 45, 1866-1876.10.1080/10934529.2010.520595[7] Zhang, H., Zhao, H., Zheng, K., Li, X., Liu, G. & Wan, Y. (2014). Diminishing hazardous air pollutant emissions from pyrolysis of furan no-bake binders using methanesulfonic acid as the binder catalyst. Journal of Thermal Analysis and Calorimetry. 116, 373-381.[8] Samuels, G., Beckermann, C. (2011). Measurement of Gas Evolution from PUNB Bonded Sand as a Function of Temperature. 65th SFSA Technical and Operating Conference, Steel Foundries Society of America, Chicago. Paper No 5.6.[9] Zhang, B., Garro, M., Chautard, D. & Tagliano, C. (2002). Gas Evolution from Resin-Bonded Sand Cores Prepared by Various Processes. Metallurgical Science and Technology. 20(2), 27-32.[10] Giese, S.R., Roorda, S.C., & Patterson, M.A. (2009). Thermal Analysis of Phenolic Urethane Binder and Correlated Properties. AFS Transactions. 117, 355-366.[11] Grefhorst, C., Senden, W., Ilman, R., Podobed, O., Lafay, V. & Tilch, W. (2010). Reduction of greensand emissions by minimum 25% - case study. China Foundry. 7(4), 419-424.[12] Abedghars, M.T., Hadji, A. & Bouhouch, S. (2011). Monotoring of air quality in an iron foundry (Case of NOx, SO2, benzene and dust). J. Mater. Environ. Sci. 2(1), 501-506.[13] Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Grabowska, B. (2017). Studies on the gases emission under high temperature condition from moulding sands bonded by modified starch CMS-Na. Archives of Foundry Engineering. 17(1), 79-82.[14] Żymankowska-Kumon, S., Bobrowski, A. & Grabowska, B. (2016). Comparison of the emission of aromatic hydrocarbons from moulding sands with furfural resin with the low content of furfuryl alcohol and different activators. Archives of Foundry Engineering. 16(4), 187-190.[15] Łucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. Metalurgija. 54(2), 319-322.[16] Łucarz, M. (2015). Thermal reclamation of the used moulding sands. Metalurgija. 54(1), 109-112.[17] Dańko, R. (2013). Criteria for an advanced assessment of quality of moulding sands with organic binders and reclamation process products. China Foundry. 10(3), 181-186.[18] Energy and Environmental Profile of the U.S. Metalcasting Industry Prepared by Energetics, Incorporated Prepared for U.S. Department of Energy Office of Industrial Technologies, September 1999. (https://energy.gov/sites/prod/files/2013/11/f4/profile_0.pdf)[19] Łucarz, M. (2014). The effect of mechanical and thermal reclamation on the matrix of quartz grain state. Kraków, Wydawnictwo Naukowe „AKAPIT”.[20] Bates, C.E. & Scott, W.D. (1975). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 83, 519-524.[21] Bates, C.E. & Scott, W.D. (1976). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 84, 793-803.[22] Bates, C.E. & Scott W.D. (1977). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 85, 209-226.[23] Kubecki, M. & Holtzer, M. (2016). Evaluation of the influence of the reclaimed addition on the amount of compounds from BTEX group, generated during pouring molten metal into the form. Prace Instytutu Metalurgii Żelaza. 67(4), 20-23.[24] Bates, C.E., & Burch, R. (2007). Core and Mold Gas Evolution: Porosity in Castings, Foundry Management & Technology. 135(5), 17-18.[25] Naro, R.L. (1999). Porosity Defects in Iron Castings from Mold-Metal Interface Reactions. AFS Transactions. 107, 839-851. [26] Monroe, R. (2005). Porosity in Castings. AFS Transactions. 113, 519-546.[27] Winardi, L., Littleton, H.E. & Bates, C.E. (2007). Gas Pressures in Sand Cores. AFS Transactions. 115, 303-312.[28] Scraber, P., Bates C. & Griffin J. (2006). Avoiding gas defects through mold and core package design. Modern Casting. 96(12), 38-40.[29] Totten, G.E., Funatani, K., Xie, L. (2004). Handbook of Metallurgical Process Design. Marcel Dekker Inc. New York.[30] Wang, Y., Zhang, Y., Su, L., Li, X., Duan, L., Wang, C. & Huang, T. (2011). Hazardous air pollutant formation pyrolysis of typical Chinese casting materials. Environ. Sci. Technol. 45(15), 6539-6544. DOI: 10.1021/es200310p.10.1021/es200310phttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000293196400050&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[31] Zhao, X., Ning, Z., Li, Z., Zou, W., Li B., Huang Y., Cao F., Sun J. (2017). Evolved gas analysis of PEP-SET sand by TG and FTIR. Journal of Analytical and Applied Pyrolysis. (in press). https://doi.org/10.1016/j.jaap.2017.04.012.10.1016/j.jaap.2017.04.012[32] Holtzer, M., Dańko, J., Lewandowski, J.L., Solarski, W., Dańko, R., Grabowska, B., Bobrowski, A., Żymankowska- Kumon, S., Sroczyński, A., Różycki, A. & Skrzyński, M. (2017). Station for research of the volume and harmfulness of gases compounds from the materials used in foundry and metallurgical processes. Polish patent. PL 224705 B1.[33] Bobrowski, A., Holtzer, M., Żymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352142100055&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[34] Makhathinia, T.P. & Rathilalb, S. (2017). Investigation of BTEX compounds adsorption onto polystyrenic resin. South African Journal of Chemical Engineering. 23, 71-80. https://doi.org/10.1016/j.sajce.2017.03.001.10.1016/j.sajce.2017.03.001[35] Fabbri, D. & Vassura, I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis. 75, 150-158. https://doi.org/10.1016/j.jaap.2005.05.003.10.1016/j.jaap.2005.05.003[36] Cacho, J.I., Campillo, N., Viñas, P. & Hernández-Córdoba, M. (2016). Gas chromatography-mass spectrometry using microvial insert thermal desorption for the determination of BTEX in edible oils. RSC Advances. 6(25), 20886-20891.[37] Milczarek, J.M. & Zięba-Palus, J. (2009). Examination of spray paints on plasters by the use of pyrolysis-gas chromatography/mass spectrometry for forensic purposes. Journal of Analytical and Applied Pyrolysis. 86(2), 252-259.[38] Durmusoglu, E., Taspinar, F. & Karademir, A. (2010). Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials. 176, 870-877.[39] Grygierczyk, G. (2016). Chromatographic analysis of organic compounds on impregnated chemically bonded stationary phases. part 1. Acta chromatographica. 17, 302-313.[40] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and Quantification of Gases Releasing From Furan No Bake Binder. Archives of Foundry Engineering. 16(3), 5-10.[41] Holtzer, M., Grabowska, B., Żymankowska-Kumon, S., Kwaśniewska-Królikowska, D., Dańko, R., Solarski, W. & Bobrowski, A. (2012). Harmfulness of moulding sands with bentonite and lustrous carbon carriers. Metalurgija. 51(4), 437-440.[42] Bobrowski, A., Holtzer, M., Dańko, R. & Żymankowska - Kumon, S. (2013). Analysis of gases emitted during a thermal decomposition of the selected phenolic binders. Metalurgia International. 18(7), 259-261. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Foundry Engineering de Gruyter

TG/DTG/DTA, FTIR and GC/MS Studies of Oil Sand for Artistic and Precision Foundry with the Emission of Gases Assessment

Loading next page...
 
/lp/de-gruyter/tg-dtg-dta-ftir-and-gc-ms-studies-of-oil-sand-for-artistic-and-v1RMpUZrZL

References (57)

Publisher
de Gruyter
Copyright
© by A. Bobrowski
ISSN
2299-2944
eISSN
2299-2944
DOI
10.1515/afe-2017-0125
Publisher site
See Article on Publisher Site

Abstract

References[1] McKinley, M.D., Lytle, C.A. & Bertsch, W. (1999). Pyrolysis of core resins used in Metalcasting. AFS Transactions. 107, 407-412.[2] Liang, J.J. & Tsay, G.S. (2010). Composition and yield of the pernicious and stench gases in furan sand model founding process. Sustainable Environment Research. 20(2), 115-125.[3] Grabowska, B., Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Kurleto-Kozioł, Ż. (2017). TGDTG- DSC, FTIR, DRIFT and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D) - new binder BioCo3. Journal of Casting&Materials Engineering. 1(1), 27-32.[4] Grabowska, B., Malinowski, P. Szucki M. & Byczyński, Ł. (2016). Thermal analysis in foundry technology. Pt. 1, Study TG-DSC of the new class of polymer binders BioCo. Journal of Thermal Analysis and Calorimetry. 126(1), 245-250.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000411160300030&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[5] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and Quantification of Gases Releasing From Furan No Bake Binder. Archives of Foundry Engineering. 16(3), 5-10.[6] Tiedje, N., Crepaz, R., Eggert, T. & Bey, N. (2010). Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds. Journal of Environmental Science and Health Part A. 45, 1866-1876.10.1080/10934529.2010.520595[7] Zhang, H., Zhao, H., Zheng, K., Li, X., Liu, G. & Wan, Y. (2014). Diminishing hazardous air pollutant emissions from pyrolysis of furan no-bake binders using methanesulfonic acid as the binder catalyst. Journal of Thermal Analysis and Calorimetry. 116, 373-381.[8] Samuels, G., Beckermann, C. (2011). Measurement of Gas Evolution from PUNB Bonded Sand as a Function of Temperature. 65th SFSA Technical and Operating Conference, Steel Foundries Society of America, Chicago. Paper No 5.6.[9] Zhang, B., Garro, M., Chautard, D. & Tagliano, C. (2002). Gas Evolution from Resin-Bonded Sand Cores Prepared by Various Processes. Metallurgical Science and Technology. 20(2), 27-32.[10] Giese, S.R., Roorda, S.C., & Patterson, M.A. (2009). Thermal Analysis of Phenolic Urethane Binder and Correlated Properties. AFS Transactions. 117, 355-366.[11] Grefhorst, C., Senden, W., Ilman, R., Podobed, O., Lafay, V. & Tilch, W. (2010). Reduction of greensand emissions by minimum 25% - case study. China Foundry. 7(4), 419-424.[12] Abedghars, M.T., Hadji, A. & Bouhouch, S. (2011). Monotoring of air quality in an iron foundry (Case of NOx, SO2, benzene and dust). J. Mater. Environ. Sci. 2(1), 501-506.[13] Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Grabowska, B. (2017). Studies on the gases emission under high temperature condition from moulding sands bonded by modified starch CMS-Na. Archives of Foundry Engineering. 17(1), 79-82.[14] Żymankowska-Kumon, S., Bobrowski, A. & Grabowska, B. (2016). Comparison of the emission of aromatic hydrocarbons from moulding sands with furfural resin with the low content of furfuryl alcohol and different activators. Archives of Foundry Engineering. 16(4), 187-190.[15] Łucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. Metalurgija. 54(2), 319-322.[16] Łucarz, M. (2015). Thermal reclamation of the used moulding sands. Metalurgija. 54(1), 109-112.[17] Dańko, R. (2013). Criteria for an advanced assessment of quality of moulding sands with organic binders and reclamation process products. China Foundry. 10(3), 181-186.[18] Energy and Environmental Profile of the U.S. Metalcasting Industry Prepared by Energetics, Incorporated Prepared for U.S. Department of Energy Office of Industrial Technologies, September 1999. (https://energy.gov/sites/prod/files/2013/11/f4/profile_0.pdf)[19] Łucarz, M. (2014). The effect of mechanical and thermal reclamation on the matrix of quartz grain state. Kraków, Wydawnictwo Naukowe „AKAPIT”.[20] Bates, C.E. & Scott, W.D. (1975). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 83, 519-524.[21] Bates, C.E. & Scott, W.D. (1976). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 84, 793-803.[22] Bates, C.E. & Scott W.D. (1977). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality - part 1. AFS Transactions. 85, 209-226.[23] Kubecki, M. & Holtzer, M. (2016). Evaluation of the influence of the reclaimed addition on the amount of compounds from BTEX group, generated during pouring molten metal into the form. Prace Instytutu Metalurgii Żelaza. 67(4), 20-23.[24] Bates, C.E., & Burch, R. (2007). Core and Mold Gas Evolution: Porosity in Castings, Foundry Management & Technology. 135(5), 17-18.[25] Naro, R.L. (1999). Porosity Defects in Iron Castings from Mold-Metal Interface Reactions. AFS Transactions. 107, 839-851. [26] Monroe, R. (2005). Porosity in Castings. AFS Transactions. 113, 519-546.[27] Winardi, L., Littleton, H.E. & Bates, C.E. (2007). Gas Pressures in Sand Cores. AFS Transactions. 115, 303-312.[28] Scraber, P., Bates C. & Griffin J. (2006). Avoiding gas defects through mold and core package design. Modern Casting. 96(12), 38-40.[29] Totten, G.E., Funatani, K., Xie, L. (2004). Handbook of Metallurgical Process Design. Marcel Dekker Inc. New York.[30] Wang, Y., Zhang, Y., Su, L., Li, X., Duan, L., Wang, C. & Huang, T. (2011). Hazardous air pollutant formation pyrolysis of typical Chinese casting materials. Environ. Sci. Technol. 45(15), 6539-6544. DOI: 10.1021/es200310p.10.1021/es200310phttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000293196400050&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[31] Zhao, X., Ning, Z., Li, Z., Zou, W., Li B., Huang Y., Cao F., Sun J. (2017). Evolved gas analysis of PEP-SET sand by TG and FTIR. Journal of Analytical and Applied Pyrolysis. (in press). https://doi.org/10.1016/j.jaap.2017.04.012.10.1016/j.jaap.2017.04.012[32] Holtzer, M., Dańko, J., Lewandowski, J.L., Solarski, W., Dańko, R., Grabowska, B., Bobrowski, A., Żymankowska- Kumon, S., Sroczyński, A., Różycki, A. & Skrzyński, M. (2017). Station for research of the volume and harmfulness of gases compounds from the materials used in foundry and metallurgical processes. Polish patent. PL 224705 B1.[33] Bobrowski, A., Holtzer, M., Żymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352142100055&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[34] Makhathinia, T.P. & Rathilalb, S. (2017). Investigation of BTEX compounds adsorption onto polystyrenic resin. South African Journal of Chemical Engineering. 23, 71-80. https://doi.org/10.1016/j.sajce.2017.03.001.10.1016/j.sajce.2017.03.001[35] Fabbri, D. & Vassura, I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis. 75, 150-158. https://doi.org/10.1016/j.jaap.2005.05.003.10.1016/j.jaap.2005.05.003[36] Cacho, J.I., Campillo, N., Viñas, P. & Hernández-Córdoba, M. (2016). Gas chromatography-mass spectrometry using microvial insert thermal desorption for the determination of BTEX in edible oils. RSC Advances. 6(25), 20886-20891.[37] Milczarek, J.M. & Zięba-Palus, J. (2009). Examination of spray paints on plasters by the use of pyrolysis-gas chromatography/mass spectrometry for forensic purposes. Journal of Analytical and Applied Pyrolysis. 86(2), 252-259.[38] Durmusoglu, E., Taspinar, F. & Karademir, A. (2010). Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials. 176, 870-877.[39] Grygierczyk, G. (2016). Chromatographic analysis of organic compounds on impregnated chemically bonded stationary phases. part 1. Acta chromatographica. 17, 302-313.[40] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and Quantification of Gases Releasing From Furan No Bake Binder. Archives of Foundry Engineering. 16(3), 5-10.[41] Holtzer, M., Grabowska, B., Żymankowska-Kumon, S., Kwaśniewska-Królikowska, D., Dańko, R., Solarski, W. & Bobrowski, A. (2012). Harmfulness of moulding sands with bentonite and lustrous carbon carriers. Metalurgija. 51(4), 437-440.[42] Bobrowski, A., Holtzer, M., Dańko, R. & Żymankowska - Kumon, S. (2013). Analysis of gases emitted during a thermal decomposition of the selected phenolic binders. Metalurgia International. 18(7), 259-261.

Journal

Archives of Foundry Engineeringde Gruyter

Published: Dec 20, 2017

There are no references for this article.