Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Associated tolerance optimization approach using manufacturing difficulty coefficients and genetic algorithm

Associated tolerance optimization approach using manufacturing difficulty coefficients and... The purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is among the authors’ perspectives of accomplished previous research work to cooperative optimal tolerance allocation approach for concurrent engineering area.Design/methodology/approachThis study introduces the proposed GA modeling. The objective function of the proposed GA is to minimize total cost constrained by the equation of functional requirements tolerances considering difficulty coefficients. The manufacturing difficulty computation is based on tools for the study and analysis of reliability of the design or the process, as the failure mode, effects and criticality analysis (FMECA) and Ishikawa diagram.FindingsThe proposed approach, based on difficulty coefficient computation and GA optimization method [genetic algorithm optimization using difficulty coefficient computation (GADCC)], has been applied to mechanical assembly taken from the literature and compared to previous methods regarding tolerance values and computed total cost. The total cost is the summation of manufacturing cost and quality loss. The proposed approach is economic and efficient that leads to facilitate the manufacturing of difficult dimensions by increasing their tolerances and reducing the rate of defect parts of the assembly.Originality/valueThe originality of this new optimal tolerance allocation method is to make a marriage between GA and manufacturing difficulty. The computation of part dimensions difficulty is based on incorporating FMECA tool and Ishikawa diagram This comparative study highlights the benefits of the proposed GADCC optimization method. The results lead to obtain optimal tolerances that minimize the total cost and respect the functional, quality and manufacturing requirements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

Associated tolerance optimization approach using manufacturing difficulty coefficients and genetic algorithm

Assembly Automation , Volume 42 (6): 14 – Dec 6, 2022

Loading next page...
 
/lp/emerald-publishing/associated-tolerance-optimization-approach-using-manufacturing-gNWWCiY4aT

References (59)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0144-5154
eISSN
0144-5154
DOI
10.1108/aa-02-2022-0024
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is among the authors’ perspectives of accomplished previous research work to cooperative optimal tolerance allocation approach for concurrent engineering area.Design/methodology/approachThis study introduces the proposed GA modeling. The objective function of the proposed GA is to minimize total cost constrained by the equation of functional requirements tolerances considering difficulty coefficients. The manufacturing difficulty computation is based on tools for the study and analysis of reliability of the design or the process, as the failure mode, effects and criticality analysis (FMECA) and Ishikawa diagram.FindingsThe proposed approach, based on difficulty coefficient computation and GA optimization method [genetic algorithm optimization using difficulty coefficient computation (GADCC)], has been applied to mechanical assembly taken from the literature and compared to previous methods regarding tolerance values and computed total cost. The total cost is the summation of manufacturing cost and quality loss. The proposed approach is economic and efficient that leads to facilitate the manufacturing of difficult dimensions by increasing their tolerances and reducing the rate of defect parts of the assembly.Originality/valueThe originality of this new optimal tolerance allocation method is to make a marriage between GA and manufacturing difficulty. The computation of part dimensions difficulty is based on incorporating FMECA tool and Ishikawa diagram This comparative study highlights the benefits of the proposed GADCC optimization method. The results lead to obtain optimal tolerances that minimize the total cost and respect the functional, quality and manufacturing requirements.

Journal

Assembly AutomationEmerald Publishing

Published: Dec 6, 2022

Keywords: Tolerance allocation; Tolerance optimization; Genetic algorithm; Manufacturing difficulty; Total cost model

There are no references for this article.