Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning

A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in... Although voxel models have been applied to address diverse problems in computer-aided design processes, their role in multi-domain data integration in digital architecture and planning has not been extensively studied. The primary objective of this study is to map the current state of the art and to identify open questions concerning data structuring, integration, and modeling and design of multi-scale objects and systems in architecture. Focus is placed on types of voxel models that are linked with computer-aided design models. This study utilizes a semi-systematic literature review methodology that combines scoping and narrative methodology to examine different types and uses of voxel models. This is done across a range of disciplines, including architecture, spatial planning, computer vision, geomatics, geosciences, manufacturing, and mechanical and civil engineering. Voxel-model applications can be found in studies addressing generative design, geomatics, material science and computational morphogenesis. A targeted convergence of these approaches can lead to integrative, holistic, data-driven design approaches. We present (1) a summary and systematization of the research results reported in the literature in a novel manner, (2) the identification of research gaps concerning voxel-based data structures for multi-domain and trans-scalar data integration in architectural design and urban planning, and (3) any further research questions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Architecture Multidisciplinary Digital Publishing Institute

A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning

A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning

Architecture , Volume 3 (2) – Mar 23, 2023

Abstract

Although voxel models have been applied to address diverse problems in computer-aided design processes, their role in multi-domain data integration in digital architecture and planning has not been extensively studied. The primary objective of this study is to map the current state of the art and to identify open questions concerning data structuring, integration, and modeling and design of multi-scale objects and systems in architecture. Focus is placed on types of voxel models that are linked with computer-aided design models. This study utilizes a semi-systematic literature review methodology that combines scoping and narrative methodology to examine different types and uses of voxel models. This is done across a range of disciplines, including architecture, spatial planning, computer vision, geomatics, geosciences, manufacturing, and mechanical and civil engineering. Voxel-model applications can be found in studies addressing generative design, geomatics, material science and computational morphogenesis. A targeted convergence of these approaches can lead to integrative, holistic, data-driven design approaches. We present (1) a summary and systematization of the research results reported in the literature in a novel manner, (2) the identification of research gaps concerning voxel-based data structures for multi-domain and trans-scalar data integration in architectural design and urban planning, and (3) any further research questions.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/a-scoping-review-of-voxel-model-applications-to-enable-multi-domain-NJat1gYZ10

References (153)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2023 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2673-8945
DOI
10.3390/architecture3020010
Publisher site
See Article on Publisher Site

Abstract

Although voxel models have been applied to address diverse problems in computer-aided design processes, their role in multi-domain data integration in digital architecture and planning has not been extensively studied. The primary objective of this study is to map the current state of the art and to identify open questions concerning data structuring, integration, and modeling and design of multi-scale objects and systems in architecture. Focus is placed on types of voxel models that are linked with computer-aided design models. This study utilizes a semi-systematic literature review methodology that combines scoping and narrative methodology to examine different types and uses of voxel models. This is done across a range of disciplines, including architecture, spatial planning, computer vision, geomatics, geosciences, manufacturing, and mechanical and civil engineering. Voxel-model applications can be found in studies addressing generative design, geomatics, material science and computational morphogenesis. A targeted convergence of these approaches can lead to integrative, holistic, data-driven design approaches. We present (1) a summary and systematization of the research results reported in the literature in a novel manner, (2) the identification of research gaps concerning voxel-based data structures for multi-domain and trans-scalar data integration in architectural design and urban planning, and (3) any further research questions.

Journal

ArchitectureMultidisciplinary Digital Publishing Institute

Published: Mar 23, 2023

Keywords: voxel; computer-aided design; volumetric modeling; data-integrated-design workflows; review; bibliometric analysis

There are no references for this article.