Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy

Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy Nowadays, great efforts are being made to develop bcc-superalloys for medium- and high-temperature applications. However, the high brittle-to-ductile transition temperatures (BDTT) have restricted their application. Therefore, designing hot-processing routes to obtain a refined grain in these new superalloys is required. Particularly in the Fe-10Al-12V (at%) alloy, we have recently tested the BDTT shifting and, using physical models, it was indicated that a combination of L21-precipitate sizes with small grain sizes could shift the BDTT below room temperature. Here, we will present the study that allowed us to design the processing route for grain refinement in the tested superalloy. Molds of different geometry and with metallic and sand walls were used to test two different types of casting. Carbide conditioning treatments for improving the sizes and distribution were studied. The recrystallization process was explored first by hot rolling and post-annealing in stepped geometry samples with two different columnar grain orientations. Finally, we analyzed the grain microstructure obtained along a hot processing route consisting of carbide conditioning treatment, forging into a squared bar, and hot rolling up to a 2.8 mm thickness strip. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Alloys Multidisciplinary Digital Publishing Institute

Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy

Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy

Alloys , Volume 2 (1) – Jan 31, 2023

Abstract

Nowadays, great efforts are being made to develop bcc-superalloys for medium- and high-temperature applications. However, the high brittle-to-ductile transition temperatures (BDTT) have restricted their application. Therefore, designing hot-processing routes to obtain a refined grain in these new superalloys is required. Particularly in the Fe-10Al-12V (at%) alloy, we have recently tested the BDTT shifting and, using physical models, it was indicated that a combination of L21-precipitate sizes with small grain sizes could shift the BDTT below room temperature. Here, we will present the study that allowed us to design the processing route for grain refinement in the tested superalloy. Molds of different geometry and with metallic and sand walls were used to test two different types of casting. Carbide conditioning treatments for improving the sizes and distribution were studied. The recrystallization process was explored first by hot rolling and post-annealing in stepped geometry samples with two different columnar grain orientations. Finally, we analyzed the grain microstructure obtained along a hot processing route consisting of carbide conditioning treatment, forging into a squared bar, and hot rolling up to a 2.8 mm thickness strip.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/microstructure-evolution-by-thermomechanical-processing-in-the-fe-10al-u0Ag8xLGXd

References (58)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2023 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2674-063X
DOI
10.3390/alloys2010002
Publisher site
See Article on Publisher Site

Abstract

Nowadays, great efforts are being made to develop bcc-superalloys for medium- and high-temperature applications. However, the high brittle-to-ductile transition temperatures (BDTT) have restricted their application. Therefore, designing hot-processing routes to obtain a refined grain in these new superalloys is required. Particularly in the Fe-10Al-12V (at%) alloy, we have recently tested the BDTT shifting and, using physical models, it was indicated that a combination of L21-precipitate sizes with small grain sizes could shift the BDTT below room temperature. Here, we will present the study that allowed us to design the processing route for grain refinement in the tested superalloy. Molds of different geometry and with metallic and sand walls were used to test two different types of casting. Carbide conditioning treatments for improving the sizes and distribution were studied. The recrystallization process was explored first by hot rolling and post-annealing in stepped geometry samples with two different columnar grain orientations. Finally, we analyzed the grain microstructure obtained along a hot processing route consisting of carbide conditioning treatment, forging into a squared bar, and hot rolling up to a 2.8 mm thickness strip.

Journal

AlloysMultidisciplinary Digital Publishing Institute

Published: Jan 31, 2023

Keywords: ferritic alloy; vanadium carbides; hot rolling; forging; grain size; recrystallization; EBSD

There are no references for this article.