Access the full text.

Sign up today, get DeepDyve free for 14 days.

A Probability Path
— Nov 19, 2013

/lp/springer-e-books/a-probability-path-N0YufKfuQo

- Publisher
- Birkhäuser Boston
- Copyright
- Copyright � Springer Basel AG
- DOI
- 10.1007/978-0-8176-8409-9
- Publisher site
- See Book on Publisher Site

Many probability books are written by mathematicians and have the built-in bias that the reader is assumed to be a mathematician coming to the material for its beauty. This textbook is geared towards beginning graduate students from a variety of disciplines whose primary focus is not necessarily mathematics for its own sake. Instead, A Probability Path is designed for those requiring a deep understanding of advanced probability for their research in statistics, applied probability, biology, operations research, mathematical finance and engineering. A one-semester course is laid out in an efficient and readable manner covering the core material. The first three chapters provide a functioning knowledge of measure theory. Chapter 4 discusses independence, with expectation and integration covered in Chapter 5, followed by topics on different modes of convergence, laws of large numbers with applications to statistics (quantile and distribution function estimation) and applied probability. Two subsequent chapters offer a careful treatment of convergence in distribution and the central limit theorem. The final chapter treats conditional expectation and martingales, closing with a discussion of two fundamental theorems of mathematical finance. Like Adventures in Stochastic Processes , Resnick’s related and very successful textbook, A Probability Path is rich in appropriate examples, illustrations and problems and is suitable for classroom use or self-study. The present uncorrected, softcover reprint is designed to make this classic textbook available to a wider audience. This book is different from the classical textbooks on probability theory in that it treats the measure theoretic background not as a prerequisite but as an integral part of probability theory. The result is that the reader gets a thorough and well-structured framework needed to understand the deeper concepts of current day advanced probability as it is used in statistics, engineering, biology and finance.... The pace of the book is quick and disciplined. Yet there are ample examples sprinkled over the entire book and each chapter finishes with a wealthy section of inspiring problems. —Publications of the International Statistical Institute This textbook offers material for a one-semester course in probability, addressed to students whose primary focus is not necessarily mathematics.... Each chapter is completed by an exercises section. Carefully selected examples enlighten the reader in many situations. The book is an excellent introduction to probability and its applications. —Revue Roumaine de Mathématiques Pures et Appliquées ; This book explores measure theory, independence, convergence, laws of large numbers, applied probability and more. Covers the central limit theorem, conditional expectation and martingales, and discusses two fundamental theorems of mathematical finance.; 1 Sets and Events.- 2 Probability Spaces.- 3 Random Variables, Elements and Measurable Maps.- 4 Independence.- 5 Integration and Expectation.- 6 Convergence Concepts.- 7 Laws of Large Numbers and Sums of Independent Random Variables.- 8 Convergence in Distribution.- 9 Characteristic Functions and the Central Limit Theorem.- 10 Martingales.- Index.- References.; From the reviews: “This introduction to measure-theoretic probability is intended for students whose primary interest is not mathematics but statistics, engineering, biology, or finance. The book is a welcome reprint in paperback … . The book’s pace … is ‘quick and disciplined’.” (William J. Satzer, MAA Reviews, March, 2014) ; Many probability books are written by mathematicians and have the built-in bias that the reader is assumed to be a mathematician coming to the material for its beauty. This textbook is geared towards beginning graduate students from a variety of disciplines whose primary focus is not necessarily mathematics for its own sake. Instead, A Probability Path is designed for those requiring a deep understanding of advanced probability for their research in statistics, applied probability, biology, operations research, mathematical finance, and engineering. A one-semester course is laid out in an efficient and readable manner covering the core material. The first three chapters provide a functioning knowledge of measure theory. Chapter 4 discusses independence, with expectation and integration covered in Chapter 5, followed by topics on different modes of convergence, laws of large numbers with applications to statistics (quantile and distribution function estimation), and applied probability. Two subsequent chapters offer a careful treatment of convergence in distribution and the central limit theorem. The final chapter treats conditional expectation and martingales, closing with a discussion of two fundamental theorems of mathematical finance. Like Adventures in Stochastic Processes , Resnick’s related and very successful textbook, A Probability Path is rich in appropriate examples, illustrations, and problems, and is suitable for classroom use or self-study. The present uncorrected, softcover reprint is designed to make this classic textbook available to a wider audience. This book is different from the classical textbooks on probability theory in that it treats the measure theoretic background not as a prerequisite but as an integral part of probability theory. The result is that the reader gets a thorough and well-structured framework needed to understand the deeper concepts of current day advanced probability as it is used in statistics, engineering, biology and finance.... The pace of the book is quick and disciplined. Yet there are ample examples sprinkled over the entire book and each chapter finishes with a wealthy section of inspiring problems. —Publications of the International Statistical Institute This textbook offers material for a one-semester course in probability, addressed to students whose primary focus is not necessarily mathematics.... Each chapter is completed by an exercises section. Carefully selected examples enlighten the reader in many situations. The book is an excellent introduction to probability and its applications. —Revue Roumaine de Mathématiques Pures et Appliquées ; Affordable, softcover reprint of a classic textbook Mathematically rigorous treatment aimed at non-mathematicians Includes a clear outline for a one-semester course ; GB

**Published: ** Nov 19, 2013

Loading...

Read and print from thousands of top scholarly journals.

System error. Please try again!

Already have an account? Log in

Bookmark this article. You can see your Bookmarks on your DeepDyve Library.

To save an article, **log in** first, or **sign up** for a DeepDyve account if you don’t already have one.

Copy and paste the desired citation format or use the link below to download a file formatted for EndNote

Access the full text.

Sign up today, get DeepDyve free for 14 days.

All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.