# A Brief Journey in Discrete MathematicsSums of the Powers of Successive Integers

A Brief Journey in Discrete Mathematics: Sums of the Powers of Successive Integers [What happens when you sum successive powers of integers? To investigate this, define Sk,n=1+2k+3k+⋯+nk=∑i=1nik,k=0,1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle S_{k,n} = 1 + 2^k + 3^k + \cdots + n^k = \sum _{i=1}^n i^k, \ \ \ \ k=0, 1, \ldots$$ \end{document} An easy program generates the following table of numeric values for small k and n.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

# A Brief Journey in Discrete MathematicsSums of the Powers of Successive Integers

15 pages

/lp/springer-journals/a-brief-journey-in-discrete-mathematics-sums-of-the-powers-of-H02FRWhtCy
Publisher
Springer International Publishing
© Springer Nature Switzerland AG 2020
ISBN
978-3-030-37860-8
Pages
93 –108
DOI
10.1007/978-3-030-37861-5_7
Publisher site
See Chapter on Publisher Site

### Abstract

[What happens when you sum successive powers of integers? To investigate this, define Sk,n=1+2k+3k+⋯+nk=∑i=1nik,k=0,1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle S_{k,n} = 1 + 2^k + 3^k + \cdots + n^k = \sum _{i=1}^n i^k, \ \ \ \ k=0, 1, \ldots$$ \end{document} An easy program generates the following table of numeric values for small k and n.]

Published: Feb 12, 2020