Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The severe color aberrations of the early single-lens refractors soon led to the invention of the Newtonian reflector by Sir Isaac Newton. This form uses a concave parabolic (or spherical) primary mirror to collect light and bring it to a focus. Since the light never passes through the glass mirror but only bounces off its reflecting surface, the image has no spurious color. The converging light-cone reflected from the primary mirror at the bottom of the telescope tube is turned 90 degrees by a small optical flat (or diagonal mirror) before it exits the top and is reflected through the side, where it comes to a focus. All the world’s great observatory telescopes today are reflectors of one form or another, including the legendary 200-inch Hale reflector at Palomar and the twin Keck 400-inch reflectors in Hawaii (and the famed Hubble Space Telescope). This is partly because their huge mirrors can be supported from behind (instead of around the edge, as with refractors). It’s also due to the fact that the glass itself does not need to be of “optical” quality, since the light merely reflects off its polished and coated surface rather than passing through the glass itself (again, as is the case with refractors).]
Published: Jan 1, 2007
Keywords: Primary Mirror; Galilean Satellite; Market Today; Secondary Mirror; Effective Focal Length
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.