Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Schnetz (2011)
Quantum Field Theory over FqElectron. J. Comb., 18
F. Brown, O. Schnetz (2013)
Modular forms in Quantum Field TheoryarXiv: Algebraic Geometry
F. Brown, O. Schnetz (2010)
A K3 in $\phi^{4}$Duke Mathematical Journal, 161
P. Belkale, P. Brosnan (2000)
Matroids motives, and a conjecture of KontsevichDuke Mathematical Journal, 116
D. Doryn (2010)
On One Example and One Counterexample in Counting Rational Points on Graph HypersurfacesLetters in Mathematical Physics, 97
A. Logan (2016)
New realizations of modular forms in Calabi-Yau threefolds arising from $\phi^4$ theoryarXiv: Number Theory
F. Brown, O. Schnetz, K. Yeats (2012)
Properties of c_2 invariants of Feynman graphsarXiv: Algebraic Geometry
[Schnetz [1] defined the c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} invariant based on counting points on the affine varietyVariety defined by the vanishing of ΨG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi _G$$\end{document}.]
Published: Nov 26, 2016
Keywords: Modular Form; Quadratic Coefficient; Unknown Sequence; Multiple Zeta; Tate Motive
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.