Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Combinatorial Perspective on Quantum Field TheoryThe c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} Invariant

A Combinatorial Perspective on Quantum Field Theory: The c2\documentclass[12pt]{minimal}... [Schnetz [1] defined the c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} invariant based on counting points on the affine varietyVariety defined by the vanishing of ΨG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi _G$$\end{document}.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Combinatorial Perspective on Quantum Field TheoryThe c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} Invariant

Loading next page...
 
/lp/springer-journals/a-combinatorial-perspective-on-quantum-field-theory-the-c2-n0feR8Ztlz

References (7)

Publisher
Springer International Publishing
Copyright
© The Author(s) 2017
ISBN
978-3-319-47550-9
Pages
109 –111
DOI
10.1007/978-3-319-47551-6_15
Publisher site
See Chapter on Publisher Site

Abstract

[Schnetz [1] defined the c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} invariant based on counting points on the affine varietyVariety defined by the vanishing of ΨG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi _G$$\end{document}.]

Published: Nov 26, 2016

Keywords: Modular Form; Quadratic Coefficient; Unknown Sequence; Multiple Zeta; Tate Motive

There are no references for this article.