Access the full text.
Sign up today, get DeepDyve free for 14 days.
[We begin with the duality between analytic number theory, combinatorial identities and q-series, to indicate the historical development of the allied disciplines. It is irrelevant what notation we use for the Γ-function, the essential part is that we keep this notation. Section 3.7 is devoted to this important function and the hypergeometric function. We use a vector notation for the Γ-function and introduce the concepts well-poised and balanced series. The binomial coefficients also play an important part since a finite hypergeometric series can always be expressed in two equivalent ways. The three Kummerian summation formulae (and their multiple q-analogues) will follow us in future chapters. We summarise the different schools for Theta functions and show that the elliptic function snu can be written as a balanced quotient of infinite q-shifted factorials. We conclude this chapter with definitions of the most important orthogonal polynomials; we keep Jacobi’s definition for the Jacobi polynomials.]
Published: Jun 18, 2012
Keywords: Hypergeometric Function; Elliptic Function; Theta Function; Hermite Polynomial; Jacobi Polynomial
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.