Access the full text.
Sign up today, get DeepDyve free for 14 days.
[We begin with the vector notation for the most important functions and q-Taylor formulas for power series and functions of inverse q-shifted factorials. We continue with a historical introduction to the rest of this long and interesting chapter and to the next chapter as well. We will also define q-Appell functions together with the normal form. Then follows the two definitions of q-Kampé de Fériet functions due to Karlsson and Srivastava. The q-analogue of Appell and Kampé de Fériet’s transformation formulas require the Watson q-shifted factorial in the definition. We continue with Carlitz’ Saalschützian formulas, Andrews’s formal transformations and Carlson’s transformations.]
Published: Jun 18, 2012
Keywords: Reduction Formula; Lauricella Function; Carlitz; Negative Integer Argument; Jackson Formula
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.