Access the full text.
Sign up today, get DeepDyve free for 14 days.
[We introduce the first q-functions, the tilde operator, two other tilde operators and the △-operator. The q-integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int_{0}^{a} f(t,q) \,d_q(t)\equiv{a}(1-q) \sum_{n=0}^{\infty}f(aq^{n},q)q^{n} $$\end{document} can be written in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int f d\mu=\sum_{n=0}^{\infty}b_n\mu(E_n), $$\end{document} where bn means the function value f(aqn,q) times a and μ(En)=(1−q)qn denotes the measure in the point x=aqn. We use a σ-algebra , where the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{E_{n}\}_{0}^{\infty}$\end{document} are disjoint.]
Published: Jun 18, 2012
Keywords: Elliptic Function; Theta Function; Fundamental Domain; Jacobi Elliptic Function; Addition Theorem
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.