# A Computational Non-commutative Geometry Program for Disordered Topological InsulatorsElectron Dynamics: Concrete Physical Models

A Computational Non-commutative Geometry Program for Disordered Topological Insulators: Electron... [This Chapter introduces and characterizes the so called lattice models, which integrate naturally in the general framework for homogeneous materials introduced in Chap. 1. It also fixes the notations and the conventions used throughout. A model of disorder is introduced and the various regimes of disorder are discussed. The Chapter concludes with the introduction and characterization of the topological invariants corresponding to the phases classified by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2{\mathbb Z}$$\end{document} in Table 1.1.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

# A Computational Non-commutative Geometry Program for Disordered Topological InsulatorsElectron Dynamics: Concrete Physical Models

Part of the SpringerBriefs in Mathematical Physics Book Series (volume 23)
13 pages

/lp/springer-journals/a-computational-non-commutative-geometry-program-for-disordered-202kGVVvZN
Publisher
Springer International Publishing
ISBN
978-3-319-55022-0
Pages
11 –24
DOI
10.1007/978-3-319-55023-7_2
Publisher site
See Chapter on Publisher Site

### Abstract

[This Chapter introduces and characterizes the so called lattice models, which integrate naturally in the general framework for homogeneous materials introduced in Chap. 1. It also fixes the notations and the conventions used throughout. A model of disorder is introduced and the various regimes of disorder are discussed. The Chapter concludes with the introduction and characterization of the topological invariants corresponding to the phases classified by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2{\mathbb Z}$$\end{document} in Table 1.1.]

Published: Mar 18, 2017

Keywords: Fermi Level; Chiral Symmetry; Topological Insulator; Primitive Cell; Topological Invariant