Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The first purpose of this chapter is to provide a deep intuition of formal notions like the metric tensor, the Christoffel symbols, the Riemann tensor, vector fields, the covariant derivative, and so on: an intuition based on the consideration of surfaces in the three dimensional real space. We switch next to the study of geodesics, geodesic curvature and systems of geodesic coordinates. As an example of a Riemann surface, we develop the study of the Poincaré half plane and prove that it is a model of non-Euclidean geometry. We conclude with the Gauss–Codazzi–Mainardi equations and the related question of the embeddability of Riemann surfaces in the three dimensional real space.]
Published: Aug 26, 2013
Keywords: Riemann Surface; Covariant Derivative; Gaussian Curvature; Tangent Plane; Normal Curvature
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.