Access the full text.
Sign up today, get DeepDyve free for 14 days.
[In this chapter we develop a novel approach for the solution of inequality constrained optimization problems. We first describe inexact Newton methods in Section 5.1 and investigate their local convergence in Section 5.2. In Section 5.3 we review strategies for the globalization of convergence and explain a different approach based on generalized level functions and monotonicity tests. An example in Section 5.4 illustrates the shortcomings of globalization strategies which are not based on the so called natural level function. We review the Restrictive Monotonicity Test (RMT) in Section 5.5 and propose a Natural Monotonicity Test (NMT) for Newton-type methods based on a Linear Iterative Splitting Approach (LISA). This combined approach allows for estimation of the critical constants which characterize convergence. We finally present how these results can be extended to global inexact SQP methods. We present efficient numerical solution techniques of the resulting sequence of Quadratic Programming Problems (QPs) in Chapters 8 and 9.]
Published: Nov 30, 2013
Keywords: Newton Method; Global Convergence; Level Function; Jordan Block; Newton Step
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.