Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this chapter we speak again about the origin of the dressing technique, now in multidimensions. The important step was realized in the Moutard papers [340, 341] that the stabilization of the Laplace transformation chain can gen- erate solutions. Notice again (see Chap. 1) that the net of points generated by the transform of the invariants of the gauge transformations has two possible symmetry reductions: the first reduction corresponds to the Moutard case and the second one was discovered by Goursat [192, 193]. The dressing procedure in two spatial dimensions opened a way to apply the Laplace equation in Lax pairs to solve some nonlinear 2+1 equations because their associated spectral problems are expressed in terms of the Laplace equation. The celebrated 2+1 Kadomtsev–Petviashvili (KP) equation for surface water waves (there are lots of other applications [228]; see Chaps. 9, 10) and the corresponding dressing based on the direct extension of the Darboux the- ory (linear Schrod ¨ inger evolution as the first operator in the Lax pair) [313] have been the subject of intense studies [324]. The dressing methods for the Davey–Stewartson (DS) equation were introduced in [277], where, by means of eight Ablowitz–Kaup–Newell–Segur (AKNS) type pairs, ordinary
Published: Jan 1, 2007
Keywords: Laplace Transformation; Liouville Equation; Gordon Equation; MKdV Equation; Reduction Constraint
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.