Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Few Tens au Scale Physical and Chemical Structures Around Young Low-Mass ProtostarsL1527

A Few Tens au Scale Physical and Chemical Structures Around Young Low-Mass Protostars: L1527 [Sub-arcsecond resolution images of the rotational line emissions of CS and c-C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} were observed toward the low-mass protostellar core L1527 with the Atacama Large Millimeter/submillimeter Array. The observed lines are investigated to characterize the geometrical configuration of the outflow/envelope system of this source. The CS emission traces both an envelope component extending along the north-south direction and a faint outflow component with a butterfly shape. The observed kinematic structure of the envelope is well explained with the aid of a ballistic model of an infalling-rotating envelope. Although the envelope has a nearly edge-on configuration, the inclination angle of the rotation axis from the plane of the sky is found to be 85∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85{^\circ }$$\end{document}, where the western side of the envelope is found to face the observer. This configuration is opposite to that previously suggested for a larger-scale (∼104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10^4$$\end{document} au) outflow based on the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}CO (J=3-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=3-2$$\end{document}) observation, and to the morphology of infrared reflection near the protostar (∼200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 200$$\end{document} au). The discrepancy with the infrared observation result could originate from high extinction by the outflow cavity on the western side. Alternatively, these discrepancies may indicate that the outflow axis is not perpendicular to the mid-plane of the envelope structure. The acceleration of the gas in the outflow cavity wall is shown in position-velocity diagrams, and the kinematic structure in the 2000 au scale is explained with the aid of a parabolic outflow model with the inclination angle constrained by the analysis of the envelope structure. The difference in the orientation between the small and large scale outflow structures implies a precession of the outflow axis.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Few Tens au Scale Physical and Chemical Structures Around Young Low-Mass ProtostarsL1527

Loading next page...
 
/lp/springer-journals/a-few-tens-au-scale-physical-and-chemical-structures-around-young-low-A5jSoRn4k1
Publisher
Springer Nature Singapore
Copyright
© Springer Nature Singapore Pte Ltd. 2022
ISBN
978-981-19-1707-3
Pages
51 –69
DOI
10.1007/978-981-19-1708-0_4
Publisher site
See Chapter on Publisher Site

Abstract

[Sub-arcsecond resolution images of the rotational line emissions of CS and c-C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} were observed toward the low-mass protostellar core L1527 with the Atacama Large Millimeter/submillimeter Array. The observed lines are investigated to characterize the geometrical configuration of the outflow/envelope system of this source. The CS emission traces both an envelope component extending along the north-south direction and a faint outflow component with a butterfly shape. The observed kinematic structure of the envelope is well explained with the aid of a ballistic model of an infalling-rotating envelope. Although the envelope has a nearly edge-on configuration, the inclination angle of the rotation axis from the plane of the sky is found to be 85∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85{^\circ }$$\end{document}, where the western side of the envelope is found to face the observer. This configuration is opposite to that previously suggested for a larger-scale (∼104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10^4$$\end{document} au) outflow based on the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}CO (J=3-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=3-2$$\end{document}) observation, and to the morphology of infrared reflection near the protostar (∼200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 200$$\end{document} au). The discrepancy with the infrared observation result could originate from high extinction by the outflow cavity on the western side. Alternatively, these discrepancies may indicate that the outflow axis is not perpendicular to the mid-plane of the envelope structure. The acceleration of the gas in the outflow cavity wall is shown in position-velocity diagrams, and the kinematic structure in the 2000 au scale is explained with the aid of a parabolic outflow model with the inclination angle constrained by the analysis of the envelope structure. The difference in the orientation between the small and large scale outflow structures implies a precession of the outflow axis.]

Published: Nov 9, 2022

Keywords: Low-mass protostar; Protostellar disks; Jets and Outflows; Interstellar medium; Individual (L1527; IRAS 04368 +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 2557)

There are no references for this article.