Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Classical techniques construct approximations from globally kinematically admissible functions, which we define as functions that satisfy the displacement boundary condition beforehand. Two main obstacles arise: (1) it may be very difficult to find a kinematically admissible function over the entire domain and (2) if such functions are found they lead to large, strongly coupled, and complicated systems of equations. These problems have been overcome by the fact that local approximations (posed over very small partitions of the entire domain) can deliver high quality solutions, and simultaneously lead to systems of equations which have an advantageous mathematical structure amenable to large-scale computation by high-speed computers. These piece-wise or “element-wise” approximations were recognized at least 60 years ago by Courant [1] as being quite advantageous. There have been a variety of such approximation methods to solve equations of mathematical physics. The most popular method of this class is the Finite Element Method. The central feature of the method is to partition the domain in a systematic manner into an assembly of discrete subdomains or “elements,” and then to approximate the solution of each of these pieces in a manner that couples them to form a global solution valid over the whole domain. The process is designed to keep the resulting algebraic systems as computationally manageable, and memory efficient, as possible.]
Published: Aug 13, 2014
Keywords: Discrete Subdomains; Displacement Boundary Conditions; Quadratic Basis Functions; Global Entry; Quadratic finite Element Approximation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.