Access the full text.
Sign up today, get DeepDyve free for 14 days.
Chapter 6 Basic Logico-Algebraic Structures In order to appreciate the polymorphism of Rough Set Systems the essential ideas and notions of the logico-algebraic structures we shall deal with will be introduced. In Mathematical toolkit 16.3 the reader will find the basic princi- ples of bounded lattices. Moreover, all the algebraic structures needed are not only bounded lattices, but finite distributive bounded lattices, that is, finite structures D = A, ∨, ∧, 0, 1 such that the following distributive properties hold: a ∧ (b ∨ c)=(a ∧ b) ∨ (a ∧ c) (6.0.1) a ∨ (b ∧ c)=(a ∨ b) ∧ (a ∨ c) (6.0.2) Remarks. The restriction to finite structures is not a limitation when we have to deal with practically given Rough Set Systems. This consideration lies behind our choice to focus on finite algebras. However, in general the results which will follow do not require finiteness. Anyway, we shall indicate when the finiteness assumption is essential to prove a result. Among bounded distributive lattices Heyting algebras play a pro- minent role. 193 194 6 Basic Logico-Algebraic Structures 6.1 Heyting Algebras Heyting algebras aim at modeling Intuitionistic Logic. In contrast to Classical Logic which maintains that given a
Published: Jan 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.