Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Handbook of Model CategoriesRelation to (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty ,1)$$\end{document}-Categories

A Handbook of Model Categories: Relation to (∞,1)\documentclass[12pt]{minimal}... [The final chapter of Part I will touch upon the theory of (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty ,1)$$\end{document}-categories, and will discuss the relation to the theory of model categories that we have explored so far.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Handbook of Model CategoriesRelation to (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty ,1)$$\end{document}-Categories

Part of the Algebra and Applications Book Series (volume 27)

Loading next page...
 
/lp/springer-journals/a-handbook-of-model-categories-relation-to-1-documentclass-12pt-IjCojUF7jY
Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2021
ISBN
978-3-030-75034-3
Pages
89 –95
DOI
10.1007/978-3-030-75035-0_5
Publisher site
See Chapter on Publisher Site

Abstract

[The final chapter of Part I will touch upon the theory of (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty ,1)$$\end{document}-categories, and will discuss the relation to the theory of model categories that we have explored so far.]

Published: Oct 30, 2021

There are no references for this article.