A Rapid Introduction to Adaptive FilteringLeast Squares
A Rapid Introduction to Adaptive Filtering: Least Squares
Rey Vega, Leonardo; Rey, Hernan
2012-08-04 00:00:00
[In this chapter we will cover the basics of the celebrated method of Least Squares (LS). The approach to this method is different from the stochastic gradient approach from the previous chapter. As always, the idea will be to obtain an estimation of a given system using input-output measured pairs (and no statistical information), and assuming a model in which the input and output pairs are linearly related. We will also present the Recursive Least Squares (RLS) algorithm, which will be a recursive and a more computational efficient implementation of the LS method. One of its advantage is that it can be used in real time as the input-output pairs are received. In this sense, it will be very similar to the adaptive filters obtained in the previous chapter. Several important properties of LS and RLS will be discussed.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/a-rapid-introduction-to-adaptive-filtering-least-squares-6TXOLEnF0g
A Rapid Introduction to Adaptive FilteringLeast Squares
[In this chapter we will cover the basics of the celebrated method of Least Squares (LS). The approach to this method is different from the stochastic gradient approach from the previous chapter. As always, the idea will be to obtain an estimation of a given system using input-output measured pairs (and no statistical information), and assuming a model in which the input and output pairs are linearly related. We will also present the Recursive Least Squares (RLS) algorithm, which will be a recursive and a more computational efficient implementation of the LS method. One of its advantage is that it can be used in real time as the input-output pairs are received. In this sense, it will be very similar to the adaptive filters obtained in the previous chapter. Several important properties of LS and RLS will be discussed.]
Published: Aug 4, 2012
Keywords: Singular Value Decomposition; Recursive Little Square; Full Column Rank; Little Square Estimator; Little Square Problem
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.