Access the full text.
Sign up today, get DeepDyve free for 14 days.
[In this chapter, we present a series of computational results for the solution of the D-OPGen and S-OPGen problem with the aim of documenting the performance of the solution approaches presented in the previous chapters. In Section 8.1, we start with a description of the problem instances considered for the computations by specifying the power generation system, followed by the presentation of the generated scenario trees. Subsequently, we computationally investigate the incorporation of facets determined for the stochastic switching polytope of Chapter 4 as cutting planes to a branchand-cut algorithm. The main focus of this chapter lies on the investigation on the computational behavior of the SD-BB algorithm whose development and implementation has been described in the previous two chapters. In this context, we perform a systematic calibration of the applied methods and parameters with the aim of obtaining general suggestions for the setting. On this basis the algorithm is applied to instances of larger size where we scale the basic characteristics which define a problem instance of the S-OPGen problem.]
Published: Jan 20, 2011
Keywords: Wind Power; Planning Horizon; Test Instance; Lagrangian Relax; Scenario Tree
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.