Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Time for Metabolism and HormonesCircadian Mechanisms in Bioenergetics and Cell Metabolism

A Time for Metabolism and Hormones: Circadian Mechanisms in Bioenergetics and Cell Metabolism [Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-h cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light–dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioral (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-h transcriptional rhythms are cell-autonomous and self-sustained in cultured fibroblasts, and that clocks are present in most tissues and comprise a robust temporal network throughout the body. A central question remains: how do circadian transcriptional programs integrate physiologic systems within individual cells of the intact animal and how does the ensemble of local clocks align temporal harmonics in the organism with the environment? Our approach to studies of metabolic regulation by the molecular clock began with analyses of metabolic pathologies in circadian mutant animals, experiments that first became possible with the cloning of the clock genes in the late 1990s. A paradox in our early studies was that the effects of circadian clock disruption were both nutrient- and time-dependent, so that, under fed conditions, animals exhibited diabetes whereas during fasting, they decompensated and died. Application of a broad range of tissue-specific genetic and biochemical approaches has now begun to provide mechanistic insight into the circadian control of metabolism.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Time for Metabolism and HormonesCircadian Mechanisms in Bioenergetics and Cell Metabolism

Editors: Sassone-Corsi, Paolo; Christen, Yves

Loading next page...
 
/lp/springer-journals/a-time-for-metabolism-and-hormones-circadian-mechanisms-in-s6UoeqWHfJ

References (15)

  • F. Damiola, Nguyet Minh, Nicolas Preitner, Benoît Kornmann, F. Fleury-Olela, U. Schibler (2000)

    Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.

    Genes & development, 14 23

  • P. Pulimeno, T. Mannic, D. Sage, L. Giovannoni, P. Salmon, S. Lemeille, Marc Giry-Laterrière, M. Unser, D. Bosco, Christoph Bauer, Jörg Morf, P. Halban, J. Philippe, C. Dibner (2012)

    Autonomous and self-sustained circadian oscillators displayed in human islet cells

    Diabetologia, 56

  • N. Bouatia-Naji, A. Bonnefond, Christine Cavalcanti-Proença, T. Sparsø, J. Holmkvist, M. Marchand, J. Delplanque, S. Lobbens, G. Rocheleau, E. Durand, F. Graeve, J. Chévre, K. Borch-Johnsen, A. Hartikainen, A. Ruokonen, J. Tichet, M. Marre, J. Weill, B. Heude, M. Tauber, K. Lemaire, F. Schuit, P. Elliott, T. Jørgensen, G. Charpentier, S. Hadjadj, S. Cauchi, M. Vaxillaire, R. Sladek, S. Visvikis-Siest, B. Balkau, C. Lévy‐Marchal, F. Pattou, D. Meyre, A. Blakemore, M. Jarvelin, A. Walley, T. Hansen, C. Dina, O. Pedersen, P. Froguel (2009)

    A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

    Nature Genetics, 41

  • J. Dupuis, C. Langenberg, I. Prokopenko, R. Saxena, N. Soranzo, A. Jackson, E. Wheeler, N. Glazer, N. Bouatia-Naji, A. Gloyn, C. Lindgren, R. Mägi, A. Morris, J. Randall, T. Johnson, P. Elliott, D. Rybin, G. Thorleifsson, V. Steinthorsdottir, P. Henneman, H. Grallert, A. Dehghan, J. Hottenga, C. Franklin, P. Navarro, Kijoung Song, A. Goel, J. Perry, J. Egan, T. Lajunen, N. Grarup, T. Sparsø, A. Doney, B. Voight, H. Stringham, Man Li, S. Kanoni, P. Shrader, Christine Cavalcanti-Proença, M. Kumari, L. Qi, N. Timpson, C. Gieger, C. Zabena, G. Rocheleau, E. Ingelsson, P. An, J. O’Connell, J. Luan, A. Elliott, S. Mccarroll, F. Payne, R. Roccasecca, F. Pattou, P. Sethupathy, K. Ardlie, Y. Ariyurek, B. Balkau, P. Barter, J. Beilby, Y. Ben-Shlomo, R. Benediktsson, A. Bennett, S. Bergmann, M. Bochud, E. Boerwinkle, A. Bonnefond, L. Bonnycastle, K. Borch-Johnsen, Y. Böttcher, E. Brunner, S. Bumpstead, G. Charpentier, Y. Chen, P. Chines, R. Clarke, L. Coin, M. Cooper, M. Cornelis, Gabriel Crawford, L. Crisponi, I. Day, E. Geus, J. Delplanque, C. Dina, M. Erdos, A. Fedson, A. Fischer-Rosinský, N. Forouhi, C. Fox, R. Frants, M. Franzosi, P. Galan, M. Goodarzi, J. Graessler, C. Groves, S. Grundy, R. Gwilliam, U. Gyllensten, S. Hadjadj, G. Hallmans, Naomi Hammond, Xijing Han, A. Hartikainen, N. Hassanali, C. Hayward, S. Heath, S. Hercberg, C. Herder, A. Hicks, D. Hillman, A. Hingorani, A. Hofman, J. Hui, J. Hung, B. Isomaa, P. Johnson, T. Jørgensen, A. Jula, M. Kaakinen, J. Kaprio, Y. Kesaniemi, M. Kivimaki, B. Knight, S. Koskinen, P. Kovacs, K. Kyvik, G. Lathrop, D. Lawlor, O. Bacquer, C. Lecoeur, Yun Li, V. Lyssenko, R. Mahley, M. Mangino, A. Manning, M. Martínez-Larrad, J. Mcateer, L. McCulloch, R. McPherson, C. Meisinger, D. Melzer, D. Meyre, B. Mitchell, M. Morken, S. Mukherjee, S. Naitza, Narisu Narisu, M. Neville, B. Oostra, M. Orrù, R. Pakyz, C. Palmer, G. Paolisso, C. Pattaro, Daniel Pearson, J. Peden, N. Pedersen, M. Perola, A. Pfeiffer, I. Pichler, O. Polašek, D. Posthuma, Simon Potter, A. Pouta, M. Province, B. Psaty, W. Rathmann, N. Rayner, K. Rice, S. Ripatti, F. Rivadeneira, M. Roden, O. Rolandsson, A. Sandbaek, M. Sandhu, S. Sanna, A. Sayer, P. Scheet, L. Scott, U. Seedorf, S. Sharp, B. Shields, G. Sigurðsson, E. Sijbrands, A. Silveira, Laila Simpson, A. Singleton, N. Smith, U. Sovio, A. Swift, H. Syddall, A. Syvänen, Toshiko Tanaka, B. Thorand, J. Tichet, A. Tönjes, T. Tuomi, A. Uitterlinden, K. Dijk, M. Hoek, Dhiraj Varma, S. Visvikis-Siest, V. Vitart, N. Vogelzangs, G. Waeber, Peter Wagner, A. Walley, G. Walters, K. Ward, H. Watkins, M. Weedon, S. Wild, G. Willemsen, J. Witteman, J. Yarnell, E. Zeggini, D. Zélénika, B. Zethelius, G. Zhai, J. Zhao, M. Zillikens, I. Borecki, R. Loos, P. Meneton, P. Magnusson, D. Nathan, G. Williams, A. Hattersley, K. Silander, V. Salomaa, G. Smith, S. Bornstein, P. Schwarz, J. Spranger, F. Karpe, A. Shuldiner, C. Cooper, G. Dedoussis, M. Serrano-Ríos, A. Morris, L. Lind, L. Palmer, F. Hu, P. Franks, S. Ebrahim, M. Marmot, W. Kao, J. Pankow, M. Sampson, J. Kuusisto, M. Laakso, T. Hansen, O. Pedersen, P. Pramstaller, H. Wichmann, T. Illig, I. Rudan, A. Wright, M. Stumvoll, H. Campbell, James Wilson, A. Hamsten, R. Bergman, T. Buchanan, F. Collins, K. Mohlke, J. Tuomilehto, T. Valle, D. Altshuler, J. Rotter, D. Siscovick, B. Penninx, D. Boomsma, P. Deloukas, T. Spector, T. Frayling, L. Ferrucci, A. Kong, U. Thorsteinsdóttir, K. Stefánsson, C. Duijn, Y. Aulchenko, A. Cao, A. Scuteri, D. Schlessinger, M. Uda, A. Ruokonen, M. Jarvelin, D. Waterworth, P. Vollenweider, L. Peltonen, V. Mooser, G. Abecasis, N. Wareham, R. Sladek, P. Froguel, R. Watanabe, J. Meigs, L. Groop, M. Boehnke, M. McCarthy, J. Florez, I. Barroso (2010)

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    Nature genetics, 42

  • Jeongkyung Lee, M. Moulik, Z. Fang, P. Saha, Fang Zou, Yong Xu, David Nelson, K. Ma, D. Moore, V. Yechoor (2013)

    Bmal1 and β-Cell Clock Are Required for Adaptation to Circadian Disruption, and Their Loss of Function Leads to Oxidative Stress-Induced β-Cell Failure in Mice

    Molecular and Cellular Biology, 33

  • E. Maury, K. Ramsey, J. Bass (2010)

    Circadian Rhythms and Metabolic Syndrome: From Experimental Genetics to Human Disease

    Circulation Research, 106

  • K. Lamia, R. Evans (2010)

    Metabolism: Tick, tock, a β-cell clock

    Nature, 466

  • K. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki, M. Menaker (2001)

    Entrainment of the circadian clock in the liver by feeding.

    Science, 291 5503

  • Hindrik Mulder, C. Nagorny, V. Lyssenko, Leif Groop (2009)

    Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene

    Diabetologia, 52

  • C. Peek, Alison Affinati, K. Ramsey, Hsin-Yu Kuo, Wei Yu, Laura Sena, O. Ilkayeva, B. Marcheva, Yumiko Kobayashi, Chiaki Omura, D. Levine, David Bacsik, D. Gius, C. Newgard, E. Goetzman, N. Chandel, J. Denu, M. Mrksich, J. Bass (2013)

    Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

    Science, 342

  • B. Marcheva, Kathryn Ramsey, Ethan Buhr, Yumiko Kobayashi, Hong Su, C. Ko, Ganka Ivanova, Chiaki Omura, Shelley Mo, M. Vitaterna, James Lopez, L. Philipson, C. Bradfield, S. Crosby, L. JeBailey, Xiaozhong Wang, J. Takahashi, J. Bass (2010)

    Disruption of the Clock Components CLOCK and BMAL1 Leads to Hypoinsulinemia and Diabetes

    Nature, 466

  • A. Kohsaka, A. Laposky, K. Ramsey, Carmela Estrada, C. Joshu, Yumiko Kobayashi, F. Turek, J. Bass (2007)

    High-fat diet disrupts behavioral and molecular circadian rhythms in mice.

    Cell metabolism, 6 5

  • Gelin Wang, Ting Han, D. Nijhawan, Pano Theodoropoulos, Jacinth Naidoo, S. Yadavalli, Hamid Mirzaei, A. Pieper, J. Ready, S. McKnight (2014)

    P7C3 Neuroprotective Chemicals Function by Activating the Rate-Limiting Enzyme in NAD Salvage

    Cell, 158

  • L. Sadacca, K. Lamia, K. Lamia, A. deLemos, B. Blum, C. Weitz (2010)

    An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice

    Diabetologia, 54

  • K. Dyar, Stefano Ciciliot, L. Wright, R. Biensø, G. Tagliazucchi, Vishal Patel, M. Forcato, Marcia Paz, Anders Gudiksen, Francesca Solagna, M. Albiero, Irene Moretti, K. Eckel-Mahan, P. Baldi, P. Sassone-Corsi, R. Rizzuto, S. Bicciato, H. Pilegaard, B. Blaauw, S. Schiaffino (2013)

    Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    Molecular Metabolism, 3

Publisher
Springer International Publishing
Copyright
© The Editor(s) (if applicable) and the Author(s) 2016. This book is published open access.
ISBN
978-3-319-27068-5
Pages
25 –32
DOI
10.1007/978-3-319-27069-2_3
Publisher site
See Chapter on Publisher Site

Abstract

[Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-h cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light–dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioral (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-h transcriptional rhythms are cell-autonomous and self-sustained in cultured fibroblasts, and that clocks are present in most tissues and comprise a robust temporal network throughout the body. A central question remains: how do circadian transcriptional programs integrate physiologic systems within individual cells of the intact animal and how does the ensemble of local clocks align temporal harmonics in the organism with the environment? Our approach to studies of metabolic regulation by the molecular clock began with analyses of metabolic pathologies in circadian mutant animals, experiments that first became possible with the cloning of the clock genes in the late 1990s. A paradox in our early studies was that the effects of circadian clock disruption were both nutrient- and time-dependent, so that, under fed conditions, animals exhibited diabetes whereas during fasting, they decompensated and died. Application of a broad range of tissue-specific genetic and biochemical approaches has now begun to provide mechanistic insight into the circadian control of metabolism.]

Published: Apr 5, 2016

Keywords: Beta Cell; Circadian Clock; Circadian Disruption; Beta Cell Failure; Clock Function

There are no references for this article.