Ab initio Theory of Magnetic OrderingMinimisation of the Gibbs Free Energy: Magnetic Phase Diagrams and Caloric Effects

Ab initio Theory of Magnetic Ordering: Minimisation of the Gibbs Free Energy: Magnetic Phase... [Chapters 2 and 3 contain the DFT-DLM theory adopted in this thesis and the entire formalism of how to use KKR-MST in the context of SDFT to describe magnetism at finite temperatures. The central quantities obtained by the theory are the derivatives of ⟨Ωint⟩0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \Omega ^\text {int}\rangle _0$$\end{document}, namely the internal local fields {hnint}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {h}}^{\text {int}}_n\}$$\end{document} and the direct correlation function. Their calculation as a function of the state of magnetic order {mn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {m}}_n\}$$\end{document} sets the basis of the study of magnetic structures and their stabilisation.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Ab initio Theory of Magnetic OrderingMinimisation of the Gibbs Free Energy: Magnetic Phase Diagrams and Caloric Effects

Part of the Springer Theses Book Series
13 pages

/lp/springer-journals/ab-initio-theory-of-magnetic-ordering-minimisation-of-the-gibbs-free-ggXPagi0DZ
Publisher
Springer International Publishing
© Springer Nature Switzerland AG 2020
ISBN
978-3-030-37237-8
Pages
55 –68
DOI
10.1007/978-3-030-37238-5_4
Publisher site
See Chapter on Publisher Site

Abstract

[Chapters 2 and 3 contain the DFT-DLM theory adopted in this thesis and the entire formalism of how to use KKR-MST in the context of SDFT to describe magnetism at finite temperatures. The central quantities obtained by the theory are the derivatives of ⟨Ωint⟩0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \Omega ^\text {int}\rangle _0$$\end{document}, namely the internal local fields {hnint}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {h}}^{\text {int}}_n\}$$\end{document} and the direct correlation function. Their calculation as a function of the state of magnetic order {mn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {m}}_n\}$$\end{document} sets the basis of the study of magnetic structures and their stabilisation.]

Published: Jan 3, 2020