Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
[We now introduce a very simple model, referred to as ‘toy living world,’ where n-symbol sequences referred to as ‘genomes’ are subjected to random errors. The ‘genomes’ can be either arbitrary sequences or words of an error-correcting code. They are periodically replicated, after regeneration when an error-correcting code enables it. The model is as simple as to enable easy calculations of the lifetime of a ‘genome’ and the population size of the corresponding ‘species.’ If no genomic error-correcting code is used, no discrete species can exist beyond a certain genome length: a property of the true living world as fundamental as the existence of discrete species is lost, which shows the inadequacy of the uncoded model. It turns out on the contrary that the ‘toy living world’ shares basic features with the actual one in the case where a genomic error-correcting code is used, especially as regards the existence of discrete species. The toy living world just illustrates the main hypothesis. The following chapter will deal with the subsidiary hypothesis that the genomic code takes the form of a ‘nested system.’]
Published: Jan 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.