Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An Outline of Informational GeneticsDNA is an Ephemeral Memory

An Outline of Informational Genetics: DNA is an Ephemeral Memory [We now present computations of DNA capacity. Remember that information theory enables measuring the ability of any channel or memory element to convey information through space or time by its capacity, a quantity defined in Sec. 3.3.3 above. To compute it, we need to know what kind of events impair the basic information-bearing elements, namely, the nucleic-base pairs; and at which frequency these ‘error events’ occur. As regards the type of error to be considered, we already mentioned in Sec. 3.7 that it will be restricted to substitution and erasure, namely the cases where a wrong symbol replaces the correct one and where the actual symbol cannot be identified as belonging to the alphabet, respectively. In both cases, the length of the sequence remains unchanged, at variance with the cases of deletion or insertion where a symbol is removed from the sequence or inserted in it, resulting in its length decreasing or increasing by one. These latter events are not so uncommon in DNA, but it seems that their occurrence is less frequent than that of substitutions and erasures. Moreover, these cases are significantly more difficult to deal with so substitutions or erasures have been more thoroughly studied by information and channel coding theorists. To begin with, we compute the probability of symbol erasure or substitution as a function of time, assuming the errors are either substitutions or erasures, moreover occurring at a given constant frequency. We defer to Sec. 7.3 a closer examination of how the actual frequency of these error events can be estimated.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

An Outline of Informational GeneticsDNA is an Ephemeral Memory

Loading next page...
 
/lp/springer-journals/an-outline-of-informational-genetics-dna-is-an-ephemeral-memory-S70dNjRYwx

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2008
ISBN
978-3-031-00501-5
Pages
119 –124
DOI
10.1007/978-3-031-01629-5_7
Publisher site
See Chapter on Publisher Site

Abstract

[We now present computations of DNA capacity. Remember that information theory enables measuring the ability of any channel or memory element to convey information through space or time by its capacity, a quantity defined in Sec. 3.3.3 above. To compute it, we need to know what kind of events impair the basic information-bearing elements, namely, the nucleic-base pairs; and at which frequency these ‘error events’ occur. As regards the type of error to be considered, we already mentioned in Sec. 3.7 that it will be restricted to substitution and erasure, namely the cases where a wrong symbol replaces the correct one and where the actual symbol cannot be identified as belonging to the alphabet, respectively. In both cases, the length of the sequence remains unchanged, at variance with the cases of deletion or insertion where a symbol is removed from the sequence or inserted in it, resulting in its length decreasing or increasing by one. These latter events are not so uncommon in DNA, but it seems that their occurrence is less frequent than that of substitutions and erasures. Moreover, these cases are significantly more difficult to deal with so substitutions or erasures have been more thoroughly studied by information and channel coding theorists. To begin with, we compute the probability of symbol erasure or substitution as a function of time, assuming the errors are either substitutions or erasures, moreover occurring at a given constant frequency. We defer to Sec. 7.3 a closer examination of how the actual frequency of these error events can be estimated.]

Published: Jan 1, 2008

There are no references for this article.