Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.)

Auxin and sugar effects on callus induction and plant regeneration frequencies from mature... Genetic engineering of cereals currently depends on the use of tissue culture and plant regeneration systems. In wheat (Triticum aestivum L.), immature embryos are the most widely used explant to initiate cultures, but they are inconvenient due to their temporal availability and production requirements. Mature embryos are easily stored and are readily available as mature seeds. However, plant regeneration frequencies from cultures derived from mature embryos are generally low. This research was undertaken to improve callus induction and plant regeneration from wheat mature embryos of cultivar ‘Bobwhite’. The effects of four auxins [2,4-dichlorophenoxyacetic acid (2,4-D): 3,6-dichloro-o-anisic acid (dicamba); 4-amino-3,5,6-trichloropicolinic acid (picloram): and 2-(2-methyl-4-chlorophenoxy) propionic acid (2-MCPP)], and the effect of maltose vs. sucrose under filter sterilized and autoclaved conditions were evaluated. All auxin treatments resulted in callus induction except 2 MCPP. A highly significant effect of auxin type on both callus and plantlet production was detected, though interactions were observed. The effect of sugar type was dependent on the type of auxin used. Substitution of sucrose by maltose enhanced the regenration ability of callus from embryos cultured on media containing 2,4-D and picloram, but caused an opposite effect on media containing dicamba. Picloram significantly enhanced callus growth, however, embryogenic response and plant regenerability were low. Relative to 2.4-D, dicamba (18μM) resulted in a twofold increase in the number of plants regenerated per embryo and reduced the amount of time required for plant regeneration by 3–4 wk. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png In Vitro Cellular & Developmental Biology - Plant Springer Journals

Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.)

Loading next page...
 
/lp/springer-journals/auxin-and-sugar-effects-on-callus-induction-and-plant-regeneration-qrAfTw4wBH

References (51)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Society for In Vitro Biology
Subject
Life Sciences; Cell Biology; Developmental Biology; Plant Genetics & Genomics; Plant Biochemistry; Plant Physiology
ISSN
1054-5476
eISSN
1475-2689
DOI
10.1079/IVP2001250
Publisher site
See Article on Publisher Site

Abstract

Genetic engineering of cereals currently depends on the use of tissue culture and plant regeneration systems. In wheat (Triticum aestivum L.), immature embryos are the most widely used explant to initiate cultures, but they are inconvenient due to their temporal availability and production requirements. Mature embryos are easily stored and are readily available as mature seeds. However, plant regeneration frequencies from cultures derived from mature embryos are generally low. This research was undertaken to improve callus induction and plant regeneration from wheat mature embryos of cultivar ‘Bobwhite’. The effects of four auxins [2,4-dichlorophenoxyacetic acid (2,4-D): 3,6-dichloro-o-anisic acid (dicamba); 4-amino-3,5,6-trichloropicolinic acid (picloram): and 2-(2-methyl-4-chlorophenoxy) propionic acid (2-MCPP)], and the effect of maltose vs. sucrose under filter sterilized and autoclaved conditions were evaluated. All auxin treatments resulted in callus induction except 2 MCPP. A highly significant effect of auxin type on both callus and plantlet production was detected, though interactions were observed. The effect of sugar type was dependent on the type of auxin used. Substitution of sucrose by maltose enhanced the regenration ability of callus from embryos cultured on media containing 2,4-D and picloram, but caused an opposite effect on media containing dicamba. Picloram significantly enhanced callus growth, however, embryogenic response and plant regenerability were low. Relative to 2.4-D, dicamba (18μM) resulted in a twofold increase in the number of plants regenerated per embryo and reduced the amount of time required for plant regeneration by 3–4 wk.

Journal

In Vitro Cellular & Developmental Biology - PlantSpringer Journals

Published: Feb 20, 2007

There are no references for this article.