Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate SystemsDrop Evaporation Under Unsteady Conditions

Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate Systems: Drop... [In the previous two chapters we have investigated models of drop evaporation under steady-state conditions, an assumption widely used, although clearly unphysical: a mass source inside the drop is needed to maintain the drop shape unchanged during evaporation. To relieve this assumption a time dependent problem must be set and solved, increasing the complexity of analytical approaches. In particular, even for a spherical drop shrinking by evaporation, a moving boundary problem must be solved, which is known to be a challenging task, even for the simplest geometries. In this chapter we will see how it is possible to account for unsteadiness of the heat and mass transfer processes and still approach the modelling by analytical methods.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate SystemsDrop Evaporation Under Unsteady Conditions

Loading next page...
 
/lp/springer-journals/drop-heating-and-evaporation-analytical-solutions-in-curvilinear-iqy5oC9l62

References (21)

Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2021
ISBN
978-3-030-49273-1
Pages
329 –356
DOI
10.1007/978-3-030-49274-8_12
Publisher site
See Chapter on Publisher Site

Abstract

[In the previous two chapters we have investigated models of drop evaporation under steady-state conditions, an assumption widely used, although clearly unphysical: a mass source inside the drop is needed to maintain the drop shape unchanged during evaporation. To relieve this assumption a time dependent problem must be set and solved, increasing the complexity of analytical approaches. In particular, even for a spherical drop shrinking by evaporation, a moving boundary problem must be solved, which is known to be a challenging task, even for the simplest geometries. In this chapter we will see how it is possible to account for unsteadiness of the heat and mass transfer processes and still approach the modelling by analytical methods.]

Published: Jul 1, 2020

There are no references for this article.