Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electrospun ZnSnO3/PVDF-HFP Nanofibrous Triboelectric Films for Efficient Mechanical Energy Harvesting

Electrospun ZnSnO3/PVDF-HFP Nanofibrous Triboelectric Films for Efficient Mechanical Energy... Nowadays, triboelectric nanogenerators (TENGs) are one of the most emerging technologies owing to their easy and cost-effective device structure. TENGs can harvest mechanical energy from our living environment. Herein, we synthesized dielectric zinc tin oxide (ZnSnO3) nanoparticles (NPs) by a hydrothermal technique. The ZnSnO3 NPs provide a dielectric and piezoelectric effect, which can efficiently enhance the output electrical performance of the proposed TENG. The prepared ZnSnO3 NPs were embedded into a polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) polymer to prepare ZnSnO3/PVDF-HFP nanofibrous films to fabricate a TENG. The output performance of TENG was investigated and optimized by varying the loading concentration of ZnSnO3 NPs in PVDF-HFP fibrous films. The highest voltage, current, charge density, and power density from the fabricated TENG were achieved as ~ 138 V, ~ 5 µA, ~ 52 µC/m2, and ~ 1.6 W/m2, respectively. Additionally, the robustness of the TENG was studied via the long-term mechanical stability test. Finally, the practical and real-time application of the TENG was demonstrated by harvesting mechanical energy to power low-power portable electronic devices. Furthermore, the materials used in the TENG were combined into a skipping rope to harvest biomechanical/mechanical energy while exercising. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Fiber Materials Springer Journals

Electrospun ZnSnO3/PVDF-HFP Nanofibrous Triboelectric Films for Efficient Mechanical Energy Harvesting

Loading next page...
 
/lp/springer-journals/electrospun-znsno3-pvdf-hfp-nanofibrous-triboelectric-films-for-y4SN5BJFTt

References (52)

Publisher
Springer Journals
Copyright
Copyright © Donghua University, Shanghai, China 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
2524-7921
eISSN
2524-793X
DOI
10.1007/s42765-023-00295-3
Publisher site
See Article on Publisher Site

Abstract

Nowadays, triboelectric nanogenerators (TENGs) are one of the most emerging technologies owing to their easy and cost-effective device structure. TENGs can harvest mechanical energy from our living environment. Herein, we synthesized dielectric zinc tin oxide (ZnSnO3) nanoparticles (NPs) by a hydrothermal technique. The ZnSnO3 NPs provide a dielectric and piezoelectric effect, which can efficiently enhance the output electrical performance of the proposed TENG. The prepared ZnSnO3 NPs were embedded into a polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) polymer to prepare ZnSnO3/PVDF-HFP nanofibrous films to fabricate a TENG. The output performance of TENG was investigated and optimized by varying the loading concentration of ZnSnO3 NPs in PVDF-HFP fibrous films. The highest voltage, current, charge density, and power density from the fabricated TENG were achieved as ~ 138 V, ~ 5 µA, ~ 52 µC/m2, and ~ 1.6 W/m2, respectively. Additionally, the robustness of the TENG was studied via the long-term mechanical stability test. Finally, the practical and real-time application of the TENG was demonstrated by harvesting mechanical energy to power low-power portable electronic devices. Furthermore, the materials used in the TENG were combined into a skipping rope to harvest biomechanical/mechanical energy while exercising.

Journal

Advanced Fiber MaterialsSpringer Journals

Published: Oct 1, 2023

Keywords: ZnSnO3 nanoparticles; ZnSnO3/PVDF-HFP fibrous films; Triboelectric nanogenerators; Mechanical energy harvesting

There are no references for this article.