Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Energy Transfers in Atmosphere and OceanDiffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation

Energy Transfers in Atmosphere and Ocean: Diffuse Interface Approaches in Atmosphere and... [We propose to model physical effects at the sharp density interface between atmosphere and ocean with the help of diffuse interface approaches for multiphase flows with variable densities. We use the thermodynamical consistent variable density model proposed in Abels et al. (Mathematical Models and Methods in Applied Sciences 22:1150013, 2012). This results in a Cahn–Hilliard-/Navier–Stokes-type system which we complement with tangential Dirichlet boundary conditions to incorporate the effect of wind in the atmosphere. Wind is responsible for waves at the surface of the ocean, whose dynamics have an important impact on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{CO}_{2}$$\end{document}—exchange between ocean and atmosphere. We tackle this mathematical model numerically with fully adaptive and integrated numerical schemes tailored to the simulation of variable density multiphase flows governed by diffuse interface models. Here, fully adaptive, integrated, efficient, and reliable means that the mesh resolution is chosen by the numerical algorithm according to a prescribed error tolerance in the a posteriori error control on the basis of residual-based error indicators, which allow to estimate the true error from below (efficient) and from above (reliable). Our approach is based on the work of Hintermüller et al. (Journal of Computational Physics 235:810–827, 2013), Garcke et al. (Applied Numerical Mathematics 99:151–171, 2016), where a fully adaptive efficient and reliable numerical method for the simulation of two-dimensional multiphase flows with variable densities is developed. In a first step, we incorporate the stimulation of surface waves via appropriate volume forcing.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Energy Transfers in Atmosphere and OceanDiffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation

Part of the Mathematics of Planet Earth Book Series (volume 1)
Editors: Eden, Carsten; Iske, Armin

Loading next page...
 
/lp/springer-journals/energy-transfers-in-atmosphere-and-ocean-diffuse-interface-approaches-2HIZpoi6a7

References (60)

Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2019
ISBN
978-3-030-05703-9
Pages
287 –307
DOI
10.1007/978-3-030-05704-6_9
Publisher site
See Chapter on Publisher Site

Abstract

[We propose to model physical effects at the sharp density interface between atmosphere and ocean with the help of diffuse interface approaches for multiphase flows with variable densities. We use the thermodynamical consistent variable density model proposed in Abels et al. (Mathematical Models and Methods in Applied Sciences 22:1150013, 2012). This results in a Cahn–Hilliard-/Navier–Stokes-type system which we complement with tangential Dirichlet boundary conditions to incorporate the effect of wind in the atmosphere. Wind is responsible for waves at the surface of the ocean, whose dynamics have an important impact on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{CO}_{2}$$\end{document}—exchange between ocean and atmosphere. We tackle this mathematical model numerically with fully adaptive and integrated numerical schemes tailored to the simulation of variable density multiphase flows governed by diffuse interface models. Here, fully adaptive, integrated, efficient, and reliable means that the mesh resolution is chosen by the numerical algorithm according to a prescribed error tolerance in the a posteriori error control on the basis of residual-based error indicators, which allow to estimate the true error from below (efficient) and from above (reliable). Our approach is based on the work of Hintermüller et al. (Journal of Computational Physics 235:810–827, 2013), Garcke et al. (Applied Numerical Mathematics 99:151–171, 2016), where a fully adaptive efficient and reliable numerical method for the simulation of two-dimensional multiphase flows with variable densities is developed. In a first step, we incorporate the stimulation of surface waves via appropriate volume forcing.]

Published: Jan 24, 2019

There are no references for this article.