Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Gerkema, V. Shrira (2005)
Near-inertial waves in the ocean: beyond the ‘traditional approximation’Journal of Fluid Mechanics, 529
Osamu Morita (2019)
Geophysical Fluid DynamicsClassical Mechanics in Geophysical Fluid Dynamics
R. Salmon (1996)
Large-scale semigeostrophic equations for use in ocean circulation modelsJournal of Fluid Mechanics, 318
R. Salmon (1982)
The Shape of the Main ThermoclineJournal of Physical Oceanography, 12
O. Bokhove, J. Vanneste, J. Warn (1998)
A variational formulation for barotropic quasi-geostrophic flowsGeophysical and Astrophysical Fluid Dynamics, 88
A. Babin, A. Mahalov, B. Nicolaenko (1997)
Global splitting and regularity of rotating shallow-water equationsEuropean Journal of Mechanics B-fluids, 16
R. Temam, D. Wirosoetisno (2011)
Slow Manifolds and Invariant Sets of the Primitive EquationsJournal of the Atmospheric Sciences, 68
C. Stoica, T. Schmah, Darryl Holm (2009)
Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions
R. Salmon (1985)
New equations for nearly geostrophic flowJournal of Fluid Mechanics, 153
G. Vallis (2017)
Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation
Weather Bureau (1963)
GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONSMonthly Weather Review, 91
G. Reznik (2015)
Wave adjustment: general concept and examplesJournal of Fluid Mechanics, 779
K. Hasselmann (1976)
Stochastic climate models Part I. TheoryTellus A, 28
K. Klingbeil, H. Burchard (2013)
Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean modelOcean Modelling, 65
A. Majda, I. Timofeyev, Eric Eijnden (2001)
A mathematical framework for stochastic climate modelsCommunications on Pure and Applied Mathematics, 54
D. Givon, R. Kupferman, A. Stuart (2004)
Extracting macroscopic dynamics: model problems and algorithmsNonlinearity, 17
A. Babin, A. Mahalov, B. Nicolaenko (2002)
Large-Scale Atmosphere–Ocean Dynamics: Fast singular oscillating limits of stably-stratified 3D Euler and Navier–Stokes equations and ageostrophic wave fronts
F. Trias, D. Folch, A. Gorobets, A. Oliva (2015)
Building proper invariants for eddy-viscosity subgrid-scale modelsPhysics of Fluids, 27
U. Schaefer-Rolffs (2015)
A scale invariance criterion for LES parametrizations
B. Khouider, A. Majda, S. Stechmann (2012)
Climate science in the tropics: waves, vortices and PDEsNonlinearity, 26
M. Haragus, G. Iooss (2010)
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
H. Dijkstra, F. Wubs, A. Cliffe, E. Doedel, I. Dragomirescu, B. Eckhardt, A. Gelfgat, A. Hazel, V. Lucarini, A. Salinger, Erik Phipps, Juan Sanchez-Umbria, H. Schuttelaars, L. Tuckerman, U. Thiele (2012)
Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond SimulationCommunications in Computational Physics, 15
A. Constantin (2013)
Some Three-Dimensional Nonlinear Equatorial FlowsJournal of Physical Oceanography, 43
G. Papanicolaou (1976)
Some probabilistic problems and methods in singular perturbationsRocky Mountain Journal of Mathematics, 6
M. Koshlyakov, A. Monin (2011)
Synoptic Eddies in the Ocean
M. Oliver, S. Vasylkevych (2016)
Generalized large-scale semigeostrophic approximations for the f-plane primitive equationsJournal of Physics A: Mathematical and Theoretical, 49
D. Crommelin, A. Majda (2004)
Strategies for Model Reduction: Comparing Different Optimal BasesJournal of the Atmospheric Sciences, 61
A. Roberts (2007)
Normal form transforms separate slow and fast modes in stochastic dynamical systemsPhysica A-statistical Mechanics and Its Applications, 387
J. Marsden, T. Ratiu (1999)
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
Bjorn Sandstede (2002)
Chapter 18 - Stability of Travelling Waves, 2
Frédéric Charve (2006)
Asymptotics and vortex patches for the quasigeostrophic approximationJournal de Mathématiques Pures et Appliquées, 85
Kazuo Saito, J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, Yuuki Honda (2007)
Nonhydrostatic Atmospheric Models and Operational Development at JMAJournal of the Meteorological Society of Japan, 85
E. Simonnet, H. Dijkstra, M. Ghil (2009)
Bifurcation analysis of ocean, atmosphere and climate modelsHandbook of Numerical Analysis, 14
U. Burkhardt, E. Becker (2006)
A Consistent Diffusion Dissipation Parameterization in the ECHAM Climate ModelMonthly Weather Review, 134
E. Becker (2003)
Frictional Heating in Global Climate ModelsMonthly Weather Review, 131
M. Bates, R. Grimshaw (2014)
An extended equatorial plane: linear spectrum and resonant triadsGeophysical & Astrophysical Fluid Dynamics, 108
M. Oliver, S. Vasylkevych (2013)
Generalized LSG models with spatially varying Coriolis parameterGeophysical & Astrophysical Fluid Dynamics, 107
C. Franzke, T. O’Kane, J. Berner, P. Williams, V. Lucarini (2015)
Stochastic climate theory and modelingWiley Interdisciplinary Reviews: Climate Change, 6
A. White (2002)
Large-Scale Atmosphere–Ocean Dynamics: A view of the equations of meteorological dynamics and various approximations
U. Achatz, S. Dolaptchiev, I. Timofeyev (2013)
Subgrid-scale closure for the inviscid Burgers-Hopf equationCommunications in Mathematical Sciences, 11
V. Kamenkovich, M. Koshlyakov, A. Monin (1986)
Eddies in the Open Ocean
G. Kawahara, M. Uhlmann, L. Veen (2011)
The Significance of Simple Invariant Solutions in Turbulent FlowsarXiv: Fluid Dynamics
K. Julien, E. Knobloch (2007)
Reduced models for fluid flows with strong constraintsJournal of Mathematical Physics, 48
R. Klein (2010)
Scale-Dependent Models for Atmospheric FlowsAnnual Review of Fluid Mechanics, 42
J. Boyd, Cheng Zhou (2008)
Kelvin waves in the nonlinear shallow water equations on the sphere: nonlinear travelling waves and the corner wave bifurcationJournal of Fluid Mechanics, 617
A. Majda, I. Timofeyev, E. Vanden-Eijnden (2003)
Systematic Strategies for Stochastic Mode Reduction in ClimateJournal of the Atmospheric Sciences, 60
M. Bellac (2007)
Nonequilibrium statistical mechanicsPhysics Subject Headings (PhySH)
M. Oliver (2006)
Variational asymptotics for rotating shallow water near geostrophy: a transformational approachJournal of Fluid Mechanics, 551
K. Emanuel (1985)
Comments on “Inertial Instability and Mesoscale Convective Systems. Part I”Journal of the Atmospheric Sciences, 42
T. Shepherd (1990)
Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid DynamicsAdvances in Geophysics, 32
Tomoi Koide, Takeshi Kodama (2011)
Navier–Stokes, Gross–Pitaevskii and generalized diffusion equations using the stochastic variational methodJournal of Physics A: Mathematical and Theoretical, 45
T. Callaghan, L. Forbes (2006)
Computing large-amplitude progressive Rossby waves on a sphereJ. Comput. Phys., 217
M. Beck, Bjorn Sandstede, K. Zumbrun (2008)
Nonlinear Stability of Time-Periodic Viscous ShocksArchive for Rational Mechanics and Analysis, 196
E. Grenier, N. Masmoudi (1997)
Ekman layers of rotating fluids, the case of well prepared initial dataCommunications in Partial Differential Equations, 22
Robert Smith, D. Dritschel (2006)
Revisiting the Rossby-Haurwitz wave test case with contour advectionJ. Comput. Phys., 217
M. Cullen, R. Purser (1984)
An Extended Lagrangian Theory of Semi-Geostrophic FrontogenesisJournal of the Atmospheric Sciences, 41
J. Benamou, Y. Brenier (1998)
Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport ProblemSIAM J. Appl. Math., 58
H. Risken (1984)
Fokker-Planck Equation
T. Warn, O. Bokhove, T. Shepherd, G. Vallis (1995)
Rossby number expansions, slaving principles, and balance dynamicsQuarterly Journal of the Royal Meteorological Society, 121
A. Babin, A. Mahalov, B. Nicolaenko (1996)
Integrability and Regularity of 3D Euler and Navier-Stokes Equations for Uniformly Rotating Fluids
V. Arnold, B. Khesin (1998)
Topological methods in hydrodynamics
Darryl Holm, V. Zeitlin (1998)
Hamilton’s principle for quasigeostrophic motionPhysics of Fluids, 10
J. Wouters, V. Lucarini (2012)
Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig ApproachJournal of Statistical Physics, 151
B. Hoskins (1975)
The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations.Journal of the Atmospheric Sciences, 32
U. Schaefer-Rolffs, E. Becker (2013)
Horizontal Momentum Diffusion in GCMs Using the Dynamic Smagorinsky ModelMonthly Weather Review, 141
R. Chatterjee (1995)
Dynamical symmetries and Nambu mechanicsLetters in Mathematical Physics, 36
C. Franzke, A. Majda (2006)
Low-Order Stochastic Mode Reduction for a Prototype Atmospheric GCMJournal of the Atmospheric Sciences, 63
G. Schneider (1994)
Error estimates for the Ginzburg-Landau approximationZeitschrift für angewandte Mathematik und Physik ZAMP, 45
D. Olbers, J. Willebrand, C. Eden (2012)
Ocean DynamicsOcean Dynamics
H. Mori (1965)
Transport, Collective Motion, and Brownian MotionProgress of Theoretical Physics, 33
Frédéric Charve (2014)
Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive EquationsActa Applicandae Mathematicae, 158
Darryl Holm (2014)
Variational principles for stochastic fluid dynamicsProceedings. Mathematical, Physical, and Engineering Sciences / The Royal Society, 471
G. Brethouwer, Y. Duguet, P. Schlatter (2012)
Turbulent–laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forcesJournal of Fluid Mechanics, 704
A. Majda, R. Klein (2003)
Systematic Multiscale Models for the TropicsJournal of the Atmospheric Sciences, 60
C. Gardiner (2009)
Stochastic Methods: A Handbook for the Natural and Social Sciences
F. Bouchut, J. Sommer, V. Zeitlin (2005)
Breaking of balanced and unbalanced equatorial waves.Chaos, 15 1
T. Gerkema, V. Shrira (2005)
Near-inertial waves on the “nontraditional” β planeJournal of Geophysical Research, 110
M. Meyries, J. Rademacher, E. Siero (2013)
Quasi-Linear Parabolic Reaction-Diffusion Systems: A User's Guide to Well-Posedness, Spectra, and Stability of Travelling WavesSIAM J. Appl. Dyn. Syst., 13
Mahmut Çalık, M. Oliver, S. Vasylkevych (2013)
Global Well-Posedness for the Generalized Large-Scale Semigeostrophic EquationsArchive for Rational Mechanics and Analysis, 207
P. Embid, A. Majda (1996)
Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticityCommunications in Partial Differential Equations, 21
G. Gottwald, D. Crommelin, C. Franzke (2016)
Stochastic Climate Theory
Panagiotis Stinis (2005)
A comparative study of two stochastic mode reduction methodsPhysica D: Nonlinear Phenomena, 213
A. Mohebalhojeh, D. Dritschel (2001)
Hierarchies of Balance Conditions for the f -Plane Shallow-Water EquationsJournal of the Atmospheric Sciences, 58
R. Blender, G. Badin (2015)
Hydrodynamic Nambu brackets derived by geometric constraintsJournal of Physics A: Mathematical and Theoretical, 48
A. Kasahara, J. Gary (2010)
Studies of inertio‐gravity waves on midlatitude beta‐plane without the traditional approximationQuarterly Journal of the Royal Meteorological Society, 136
S. Griffies, R. Pacanowski, M. Schmidt, V. Balaji (2001)
Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean ModelsMonthly Weather Review, 129
W. Blumen, R. Wu (1995)
Geostrophic Adjustment: Frontogenesis and Energy ConversionJournal of Physical Oceanography, 25
W. Schubert, Richard Taft, Levi Silvers (2009)
Shallow Water Quasi‐Geostrophic Theory on the SphereJournal of Advances in Modeling Earth Systems, 1
Chun-Hsiung Hsia, T. Ma, Shouhong Wang (2006)
Stratified rotating Boussinesq equations in geophysical fluid dynamics: Dynamic bifurcation and periodic solutionsJournal of Mathematical Physics, 48
S. Danilov, S. Juricke, A. Kutsenko, M. Oliver (2019)
Toward Consistent Subgrid Momentum Closures in Ocean ModelsMathematics of Planet Earth
C. Franzke, A. Majda, E. Vanden-Eijnden (2005)
Low-Order Stochastic Mode Reduction for a Realistic Barotropic Model ClimateJournal of the Atmospheric Sciences, 62
A. Gill (1982)
Atmosphere-Ocean Dynamics
Ian Chan, T. Shepherd (2013)
Balance model for equatorial long wavesJournal of Fluid Mechanics, 725
A. Majda, C. Franzke, D. Crommelin (2009)
Normal forms for reduced stochastic climate modelsProceedings of the National Academy of Sciences, 106
A. Chorin, O. Hald, R. Kupferman (2000)
Optimal prediction and the Mori-Zwanzig representation of irreversible processes.Proceedings of the National Academy of Sciences of the United States of America, 97 7
K. Emanuel (1979)
Inertial Instability and Mesoscale Convective Systems. Part I: Linear Theory of Inertial Instability in Rotating Viscous Fluids.Journal of the Atmospheric Sciences, 36
I. Grooms, K. Julien, B. Fox‐Kemper (2011)
On the interactions between planetary geostrophy and mesoscale eddiesDynamics of Atmospheres and Oceans, 51
C. Cao, Jinkai Li, E. Titi (2016)
Global Well‐Posedness of the Three‐Dimensional Primitive Equations with Only Horizontal Viscosity and DiffusionCommunications on Pure and Applied Mathematics, 69
C. Franzke (2013)
Predictions of critical transitions with non-stationary reduced order modelsPhysica D: Nonlinear Phenomena, 262
M. McIntyre, W. Norton (2000)
Potential Vorticity Inversion on a HemisphereJournal of the Atmospheric Sciences, 57
J. Boyd (2002)
Equatorial Solitary Waves. Part V: Initial Value Experiments, Coexisting Branches, and Tilted-Pair InstabilityJournal of Physical Oceanography, 32
J. McWilliams (1977)
A note on a consistent quasigeostrophic model in a multiply connected domainDynamics of Atmospheres and Oceans, 1
R. Ibragimov (2011)
Nonlinear viscous fluid patterns in a thin rotating spherical domain and applicationsPhysics of Fluids, 23
G. Pavliotis, A. Stuart (2008)
Multiscale Methods: Averaging and Homogenization
M. McIntyre (2015)
DYNAMICAL METEOROLOGY | Balanced Flow
A. Majda (2003)
Introduction to PDEs and Waves in Atmosphere and Ocean
W. Moon, W. Moon, J. Wettlaufer, J. Wettlaufer (2014)
On the interpretation of Stratonovich calculusNew Journal of Physics, 16
T. Kapitula, K. Promislow (2013)
Spectral and Dynamical Stability of Nonlinear Waves
C. Ansorge, J. Mellado (2016)
Analyses of external and global intermittency in the logarithmic layer of Ekman flowJournal of Fluid Mechanics, 805
J. Whitehead, B. Wingate (2014)
The influence of fast waves and fluctuations on the evolution of the dynamics on the slow manifoldJournal of Fluid Mechanics, 757
W. Verkley, I. Velde (2010)
Balanced dynamics in the TropicsQuarterly Journal of the Royal Meteorological Society, 136
R. Temam, Shouhong Wang (1993)
Inertial Forms of Navier-Stokes Equations on the SphereJournal of Functional Analysis, 117
T. Shaw (2009)
Energy and momentum consistency in subgrid-scale parameterization for climate models
J. Allen, Darryl Holm, P. Newberger, J. Norbury, I. Roulstone (2002)
Extended-geostrophic Euler–Poincaré models for mesoscale oceanographic flow
P. Imkeller, J. Storch (2001)
Stochastic climate models
L. Debnath (2008)
Geophysical Fluid Dynamics
M. Tort, B. Ribstein, V. Zeitlin (2016)
Symmetric and asymmetric inertial instability of zonal jets on the $f$ -plane with complete Coriolis forceJournal of Fluid Mechanics, 788
N. Balmforth, P. Morrison, Jean-Luc Thiffeault (2013)
Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave modelarXiv: Statistical Mechanics
V. Zeitlin, S. Medvedev, R. Plougonven (2003)
Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. TheoryJournal of Fluid Mechanics, 481
J. Thuburn, Yong Li (2000)
Numerical simulations of Rossby–Haurwitz wavesTellus A: Dynamic Meteorology and Oceanography, 52
R. Salmon (1983)
Practical use of Hamilton's principleJournal of Fluid Mechanics, 132
T. Kurtz (1973)
A limit theorem for perturbed operator semigroups with applications to random evolutionsJournal of Functional Analysis, 12
W. Wang, A. Roberts (2009)
Slow manifold and averaging for slow–fast stochastic differential systemJournal of Mathematical Analysis and Applications, 398
R. Ford, M. McIntyre, W. Norton (2000)
Balance and the Slow Quasimanifold: Some Explicit ResultsJournal of the Atmospheric Sciences, 57
Anne-Laure Dalibard, L. Saint-Raymond (2009)
Mathematical study of the β-plane model for rotating fluids in a thin layerJournal de Mathématiques Pures et Appliquées, 94
Darryl Holm, J. Marsden, T. Ratiu (1998)
The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum TheoriesAdvances in Mathematics, 137
D. Dritschel, G. Gottwald, M. Oliver (2017)
Comparison of variational balance models for the rotating shallow water equationsJournal of Fluid Mechanics, 822
A. Doelman, Bjorn Sandstede, A. Scheel, G. Schneider (2009)
The Dynamics of Modulated Wave Trains
D. Dritschel, A. Viudez (2003)
A balanced approach to modelling rotating stably stratified geophysical flowsJournal of Fluid Mechanics, 488
B. Cheng, A. Mahalov (2013)
Time-averages of fast oscillatory systemsDiscrete and Continuous Dynamical Systems - Series S, 6
J. Theiss, A. Mohebalhojeh (2009)
The equatorial counterpart of the quasi-geostrophic modelJournal of Fluid Mechanics, 637
K. Julien, E. Knobloch, R. Milliff, J. Werne (2006)
Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flowsJournal of Fluid Mechanics, 555
S. Dolaptchiev, R. Klein (2013)
A Multiscale Model for the Planetary and Synoptic Motions in the AtmosphereJournal of the Atmospheric Sciences, 70
R. Salmon (2007)
A General Method for Conserving Energy and Potential Enstrophy in Shallow-Water ModelsJournal of the Atmospheric Sciences, 64
M. Cullen (2008)
A comparison of numerical solutions to the Eady frontogenesis problemQuarterly Journal of the Royal Meteorological Society, 134
Ryan Goh, C. Wayne (2018)
Vortices in stably-stratified rapidly rotating Boussinesq convectionNonlinearity, 32
J. Vanneste (2013)
Balance and Spontaneous Wave Generation in Geophysical FlowsAnnual Review of Fluid Mechanics, 45
L. Takhtajan (1993)
On foundation of the generalized Nambu mechanicsCommunications in Mathematical Physics, 160
Francesco Ragone, G. Badin (2015)
A study of surface semi-geostrophic turbulence: freely decaying dynamicsJournal of Fluid Mechanics, 792
A. Stewart, P. Dellar (2010)
Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-planeJournal of Fluid Mechanics, 651
G. Gottwald, M. Oliver (2014)
Slow dynamics via degenerate variational asymptoticsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470
A. Stern, Y. Tong, M. Desbrun, J. Marsden (2007)
Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential FormsarXiv: Numerical Analysis, 73
G. Badin (2014)
On the role of non-uniform stratification and short-wave instabilities in three-layer quasi-geostrophic turbulencePhysics of Fluids, 26
L. Saint-Raymond (2010)
Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography
D. Olbers, C. Eden (2013)
A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity WavesJournal of Physical Oceanography, 43
J. Boyd (1980)
Equatorial Solitary Waves. Part I: Rossby SolitonsJournal of Physical Oceanography, 10
R. Salmon (2005)
A general method for conserving quantities related to potential vorticity in numerical modelsNonlinearity, 18
F. Kwasniok (2004)
Empirical Low-Order Models of Barotropic FlowJournal of the Atmospheric Sciences, 61
M. Tort, T. Dubos, F. Bouchut, V. Zeitlin (2014)
Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topographyJournal of Fluid Mechanics, 748
A. Majda, C. Franzke, B. Khouider (2008)
An applied mathematics perspective on stochastic modelling for climatePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
R. Plougonven, V. Zeitlin (2005)
Lagrangian approach to geostrophic adjustment of frontal anomalies in a stratified fluidGeophysical & Astrophysical Fluid Dynamics, 99
T. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, A. Weisheimer (2009)
Stochastic parametrization and model uncertainty
J. Holton (2004)
An introduction to dynamic meteorology
R. Zwanzig (1973)
Nonlinear generalized Langevin equationsJournal of Statistical Physics, 9
O. Bokhove, M. Oliver (2006)
Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flowsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462
J. Storch, G. Badin, M. Oliver (2019)
The Interior Energy Pathway: Inertia-Gravity Wave Emission by Oceanic FlowsMathematics of Planet Earth
A. Majda, I. Timofeyev, E. Eijnden (1999)
Models for stochastic climate prediction.Proceedings of the National Academy of Sciences of the United States of America, 96 26
J. Chemin, B. Desjardins, I. Gallagher, E. Grenier (2006)
Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations
A. Majda, I. Timofeyev, E. Vanden-Eijnden (2002)
A priori tests of a stochastic mode reduction strategyPhysica D: Nonlinear Phenomena, 170
G. Badin, F. Crisciani (2017)
Variational Formulation of Fluid and Geophysical Fluid Dynamics: Mechanics, Symmetries and Conservation LawsVariational Formulation of Fluid and Geophysical Fluid Dynamics
H. Hsu (2014)
An Exact Solution for Nonlinear Internal Equatorial Waves in the f-Plane ApproximationJournal of Mathematical Fluid Mechanics, 16
R. Blender, G. Badin (2016)
Construction of Hamiltonian and Nambu forms for the shallow water equationsarXiv: Mathematical Physics
A. Monahan, J. Culina (2011)
Stochastic Averaging of Idealized Climate ModelsJournal of Climate, 24
Frédéric Charve, Van-Sang Ngo (2011)
Global existence for the primitive equations with small anisotropic viscosityRevista Matematica Iberoamericana, 27
A. Stewart, P. Dellar (2011)
Multilayer shallow water equations with complete Coriolis force. Part 2. Linear plane wavesJournal of Fluid Mechanics, 690
Y. Nambu (1973)
Generalized Hamiltonian dynamicsPhysical Review D, 7
Alexandre Dutrifoy, S. Schochet, A. Majda (2009)
A simple justification of the singular limit for equatorial shallow‐water dynamicsCommunications on Pure and Applied Mathematics, 62
M. Tort, T. Dubos (2014)
Usual Approximations to the Equations of Atmospheric Motion: A Variational PerspectiveJournal of the Atmospheric Sciences, 71
[Geophysical flows comprise a broad range of spatial and temporal scales, from planetary- to meso-scale and microscopic turbulence regimes. The relation of scales and flow phenomena is essential in order to validate and improve current numerical weather and climate prediction models. While regime separation is often possible on a formal level via multi-scale analysis, the systematic exploration, structure preservation, and mathematical details remain challenging. This chapter provides an entry to the literature and reviews fundamental notions as background for the later chapters in this collection and as a departure point for original research in the field.]
Published: Jan 24, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.