Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Energy Transfers in Atmosphere and OceanObservations and Models of Low-Mode Internal Waves in the Ocean

Energy Transfers in Atmosphere and Ocean: Observations and Models of Low-Mode Internal Waves in... [The generation of internal gravity waves in the ocean is largely driven by tides, winds, and interaction of currents with the seafloor. Models and observations indicate a global energy supply for the internal wave field of about 1 TW by the conversion of barotropic tides at mid-ocean ridges and abrupt topographic features. Winds acting on the oceanic mixed layer contribute 0.3–1.5 TW, and mesoscale flow over rough topography adds about 0.2 TW. Globally, 1–2 TW are needed to maintain the observed stratification of the deep ocean by diapycnal mixing that results from the breaking of internal waves. Ocean circulation models show significant impact of the spatial distribution of internal wave dissipation and mixing on the ocean state, e.g., thermal structure, stratification, and meridional overturning circulation. Observations indicate that the local ratio of generation and dissipation of internal waves is often below unity, and thus, the energy available for mixing must be redistributed by internal tides and near-inertial waves at low vertical wavenumber that can propagate thousands of kilometers from their source regions. Eddy-permitting global ocean circulation models are able to quantify the different sources of energy input and can also simulate the propagation of the lowest internal wave modes. However, the variation of the internal wave energy flux along its paths by wave–wave interaction, topographic scattering, and refraction by mesoscale features as well as its ultimate fate by dissipation remains to be parameterized.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Energy Transfers in Atmosphere and OceanObservations and Models of Low-Mode Internal Waves in the Ocean

Part of the Mathematics of Planet Earth Book Series (volume 1)
Editors: Eden, Carsten; Iske, Armin

Loading next page...
 
/lp/springer-journals/energy-transfers-in-atmosphere-and-ocean-observations-and-models-of-5gjA2kOWO3

References (76)

Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2019
ISBN
978-3-030-05703-9
Pages
127 –143
DOI
10.1007/978-3-030-05704-6_4
Publisher site
See Chapter on Publisher Site

Abstract

[The generation of internal gravity waves in the ocean is largely driven by tides, winds, and interaction of currents with the seafloor. Models and observations indicate a global energy supply for the internal wave field of about 1 TW by the conversion of barotropic tides at mid-ocean ridges and abrupt topographic features. Winds acting on the oceanic mixed layer contribute 0.3–1.5 TW, and mesoscale flow over rough topography adds about 0.2 TW. Globally, 1–2 TW are needed to maintain the observed stratification of the deep ocean by diapycnal mixing that results from the breaking of internal waves. Ocean circulation models show significant impact of the spatial distribution of internal wave dissipation and mixing on the ocean state, e.g., thermal structure, stratification, and meridional overturning circulation. Observations indicate that the local ratio of generation and dissipation of internal waves is often below unity, and thus, the energy available for mixing must be redistributed by internal tides and near-inertial waves at low vertical wavenumber that can propagate thousands of kilometers from their source regions. Eddy-permitting global ocean circulation models are able to quantify the different sources of energy input and can also simulate the propagation of the lowest internal wave modes. However, the variation of the internal wave energy flux along its paths by wave–wave interaction, topographic scattering, and refraction by mesoscale features as well as its ultimate fate by dissipation remains to be parameterized.]

Published: Jan 24, 2019

There are no references for this article.