Access the full text.
Sign up today, get DeepDyve free for 14 days.
A Tiwari (2006)
10.1016/j.renene.2005.12.002Renewable Energy, 31
I Yahyaoui (2017)
10.1016/j.solener.2017.01.040Solar Energy, 144
Y Kabalci (2017)
10.1016/j.solener.2017.05.063Solar Energy, 153
A Nahar (2017)
10.1016/j.solener.2017.01.041Solar Energy, 144
J Reddy (2019)
10.1007/s40430-019-1901-xJournal of the Brazilian Society of Mechanical Sciences and Engineering, 41
S Agrawal (2011)
10.1016/j.solener.2010.11.013Solar Energy, 85
CL Hwang (1981)
10.1007/978-3-642-48318-9
HA Xondag (2008)
10.1016/j.rser.2005.12.012Renewable and Sustainable Energy Reviews, 12
JM Sánchez-Lozano (2013)
10.1016/j.rser.2013.03.019Renewable and Sustainable Energy Reviews, 24
A Mellor (2018)
10.1016/j.solener.2018.09.004Solar Energy, 174
AA Hegazy (2000)
10.1016/S0196-8904(99)00136-3Energy Conversion and Management, 41
R Petela (1964)
10.1115/1.3687092Journal of Heat Transfer, 2
S Debnath (2019)
10.1063/1.5050896Journal of Renewable and Sustainable Energy, 11
K Sopian (1996)
10.1016/0196-8904(96)00010-6Energy Conversion and Management, 11
D Peng (2010)
10.1016/j.applthermaleng.2010.07.010Applied Thermal Engineering, 30
W Yunn (2014)
10.1016/j.enconman.2014.02.056Energy Conversion and Management, 81
S Dubey (2009)
10.1016/j.enbuild.2009.03.010Energy and Buildings, 41
PG Charalambous (2007)
10.1016/j.applthermaleng.2006.06.007Applied Thermal Engineering, 27
J Siecker (2017)
10.1016/j.rser.2017.05.053Renewable and Sustainable Energy Reviews, 79
M Wolf (1976)
10.1016/0013-7480(76)90018-8Energy Conversion, 16
B Das (2021)
10.1016/j.renene.2020.10.054Renewable Energy, 164
A Hasan (2010)
10.1016/j.solener.2010.06.010Solar Energy, 84
Q Shi (2017)
10.1016/j.applthermaleng.2017.04.140Applied Thermal Engineering, 121
P Jha (2020)
10.1016/j.applthermaleng.2020.115838Applied Thermal Engineering, 180
K Moradi (2013)
10.1016/j.ijheatmasstransfer.2013.04.044International Journal of Heat and Mass Transfer, 64
A Gupta (2022)
10.1080/01430750.2020.1734658International Journal of Ambient Energy, 43
LI Tong (2007)
10.1007/s00170-005-0284-6International Journal of Advanced Manufacturing Technology, 31
M Slimani (2017)
10.1016/j.enconman.2016.10.066Energy Conversion and Management, 133
RK Singh (2011)
10.1016/j.engappai.2010.09.006Engineering Applications of Artificial Intelligence, 24
P Aragonés-Beltrán (2014)
10.1016/j.energy.2013.12.016Energy, 66
CS Wu (2010)
10.1016/j.ijpe.2010.05.013International Journal of Production Economics, 127
[In this chapter, an experimental energy and exergy analysis of PVTACs and conventional solar thermal collectors has been presented. Various airflow rates (from 0.0047 to 0.0165 kg/s) are tested to improve PVTAC’s performance experimentally. To use the entropy-VIKOR technique to ascertain the best settings for the PVTAC. The results show that the PVTAC system generates the total thermal energy and thermal exergy at midday. The optimal settings obtained are output parameters for the optimal PVTAC: outlet temperature 42 °C, thermal energy 28.34%, thermal exergy efficiency 0.61%, and electrical energy 16.57 Wh, with input parameters mass flow rate 0.004 kg/s, solar radiation 689 W/m2, temperature 36.1 °C, and tilt angle 25°. A confirmatory test then validates the optimization model.]
Published: Apr 30, 2023
Keywords: Solar PVT system; Optimization; MCDM; Entropy; VIKOR
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.