Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Kovács, S. Larsson (2008)
Introduction to stochastic partial differential equations, 4
J. Kahane (1985)
Some Random Series of Functions
Claudia Prévôt, M. Röckner (2007)
A Concise Course on Stochastic Partial Differential Equations
M. Barlow (1988)
Necessary and Sufficient Conditions for the Continuity of Local Time of Levy ProcessesAnnals of Probability, 16
N. Krylov (2005)
On the Foundation of the Lp-Theory of Stochastic Partial Differential Equations
M. Burke (2011)
Strong Approximations in Probability and Statistics
(1984)
Local times as stationary processes
Jin Feng, T. Kurtz (2006)
Stochastic equations in infinite dimensions
G. Prato, J. Zabczyk (1992)
Stochastic Equations in Infinite Dimensions: Foundations
H. Kesten (1969)
Hitting probabilities of single points for processes with stationary independent increments
e-mail: davar@math.utah
Mohammud Foondun, D. Khoshnevisan, E. Nualart (2007)
A local-time correspondence for stochastic partial differential equationsTransactions of the American Mathematical Society, 363
S. .E.S., R. Dalang (1999)
EXTENDING MARTINGALE MEASURE STOCHASTIC INTEGRAL WITH APPLICATIONS TO SPATIALLY HOMOGENEOUS S.P.D.E’S
D. Khoshnevisan (1997)
Escape rates for Lévy processesStudia Scientiarum Mathematicarum Hungarica, 33
Ilya Molchanov (1986)
Random fractalsMathematical Proceedings of the Cambridge Philosophical Society, 100
B. Mandelbrot (1984)
Fractal Geometry of Nature
Vladimir Clue (2004)
Harmonic analysis2004 IEEE Electro/Information Technology Conference
M. McCool, Peter Harwood (1997)
Probability Trees
F. Hausdorff (1914)
Grundzüge der Mengenlehre
P. Levy (1948)
Processus stochastiques et mouvement brownien
C. Dellacherie, P. Meyer (1978)
Probabilities and potential C
(2007)
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
J. Cooper (1973)
SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONSBulletin of The London Mathematical Society, 5
G. Prato, L. Tubaro (2005)
Stochastic Partial Differential Equations and Applications - VII
H. Eggleston (1949)
The fractional dimension of a set defined by decimal propertiesQuarterly Journal of Mathematics, 1
M. Fukushima, Y. Oshima, M. Takeda (1994)
Dirichlet forms and symmetric Markov processes
Ken-iti Sato (1999)
Lévy Processes and Infinitely Divisible Distributions
N. Jacob (2001)
Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups
P. Mattila (1995)
Geometry of sets and measures in Euclidean spaces
R. Paley, A. Zygmund (1932)
A note on analytic functions in the unit circleMathematical Proceedings of the Cambridge Philosophical Society, 28
Otto Frostman (1935)
Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions
B. Maisonneuve (1971)
Ensembles régénératifs, temps locaux et subordinateurs, 5
Tej Singh (2019)
Topological GroupsIntroduction to Topology
R. Carmona, Harry Kesten, J. Walsh, École Saint-Flour, P. Hennequin (1986)
École d'été de probabilités de Saint Flour XIV, 1984
W. Rudin (1965)
Fourier Analysis on Groups
J. Walsh (1986)
An introduction to stochastic partial differential equations
W. Rudin (1990)
Fourier Analysis on Groups: Rudin/Fourier
J. Hawkes (1979)
Potential Theory of Lévy ProcessesProceedings of The London Mathematical Society
N. Jacob (1996)
Pseudo-Differential Operators and Markov Processes
W. Pruitt (1969)
The Hausdorff Dimension of the Range of a Process with Stationary Independent IncrementsIndiana University Mathematics Journal, 19
J. Horowitz (1968)
The hausdorff dimension of the sample path of a subordinatorIsrael Journal of Mathematics, 6
R. Mauldin, S. Williams (1986)
Random recursive constructions: asymptotic geometric and topological propertiesTransactions of the American Mathematical Society, 295
(1982)
Probabilities and Potential B, translated from the French by
R. Wolpert (2000)
Lévy Processes
(2008)
and E
(1999)
Subordinators
S. Bochner, T. Teichmann (1957)
Harmonic Analysis And The Theory Of Probability
B. Rozovskii (1990)
Stochastic Evolution Systems
P. Kotelenez (2007)
Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations
A. Dold, B. Eckmann, Max Warshauer (2001)
Lecture Notes in Mathematics
G. Grimmett (1985)
Surveys in combinatorics 1985: Random flows: network flows and electrical flows through random media
(1985)
Random flows: network flows and electrical flows through random media, in: Surveys in Combinatorics
D. Khoshnevisan, Yimin Xiao (2008)
Packing dimension of the range of a Lévy process, 136
Author Schoenberg (1938)
Metric spaces and positive definite functionsTransactions of the American Mathematical Society, 44
S. Orey, W. Pruitt (1973)
Sample Functions of the $N$-Parameter Wiener ProcessAnnals of Probability, 1
(1990)
Rozovski˘ ı, Stochastic Evolution Systems, Kluwer Academic Publishing Group
M. Kanda (1978)
Characterization of semipolar sets for processes with stationary independent incrementsZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 42
B. Øksendal (1985)
Stochastic Differential EquationsThe Mathematical Gazette, 77
J. Hawkes (1988)
SOME RANDOM SERIES OF FUNCTIONS second edition (Cambridge Studies in Advanced Mathematics 5)Bulletin of The London Mathematical Society, 20
G. Kallianpur, J. Xiong (1995)
Stochastic Differential Equations in Infinite Dimensional Spaces
J. McKean (1955)
Hausdorff-Besicovitch dimension of Brownian motion pathsDuke Mathematical Journal, 22
Stephen Taylor (1953)
The Hausdorff α-dimensional measure of Brownian paths in n-spaceMathematical Proceedings of the Cambridge Philosophical Society, 49
I. Ciobanu (2009)
On free topological groups
M. Borel (1909)
Les probabilités dénombrables et leurs applications arithmétiquesRendiconti Del Circolo Matematico Di Palermo, 27
(1980)
Occupation densities
H. Helson (1983)
Harmonic Analysis
C. Rogers, Stephen Taylor (1961)
Functions continuous and singular with respect to a Hausdorff measureMathematika, 8
S. Krantz (1989)
Fractal geometryThe Mathematical Intelligencer, 11
[We present a few choice examples that showcase how the topics in the title are deeply interconnected. Although this is mainly a survey article, it is almost entirely self-contained with complete, albeit somewhat stylized, proofs.]
Published: Dec 30, 2009
Keywords: Primary 28A78; 28A80; 60J30; 60H15; Secondary 35R60; Fractals; Lévy processes; stochastic partial differential equations
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.