Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Varopoulos (1985)
Hardy-Littlewood theory for semigroupsJournal of Functional Analysis, 63
Jun Kigami (2001)
Analysis on Fractals: Index
Peter Li, S. Yau (1986)
On the parabolic kernel of the Schrödinger operatorActa Mathematica, 156
M. Tomisaki (1990)
Comparison Theorems on Dirichlet Norms and their Applications, 2
M. Barlow, Thierry Coulhoun, T. Kumagai (2005)
Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphsCommunications on Pure and Applied Mathematics, 58
M. Cowling, S. Meda (1993)
Harmonic analysis and ultracontractivityTransactions of the American Mathematical Society, 340
A. Grigor’yan (1999)
Spectral Theory and Geometry: Estimates of heat kernels on Riemannian manifolds
D. Stroock (1992)
Estimates on the heat kernel for second order divergence form operators
N. Varopoulos, L. Saloff‐Coste, T. Coulhon (1993)
Analysis and Geometry on Groups
A. Jonsson (1996)
Brownian motion on fractals and function spacesMathematische Zeitschrift, 222
M. Barlow (1998)
Diffusions on fractals
L. Saloff‐Coste (1992)
A note on Poincaré, Sobolev, and Harnack inequalitiesInternational Mathematics Research Notices, 1992
Jun Kigami (2004)
Local Nash Inequality and Inhomogeneity of Heat KernelsProceedings of the London Mathematical Society, 89
M. Fukushima, T. Shima (1992)
On a spectral analysis for the Sierpinski gasketPotential Analysis, 1
J. Jorgenson, L. Walling (2006)
The Ubiquitous Heat Kernel, 398
A. Grigor’yan (1994)
Heat kernel upper bounds on a complete non-compact manifold.Revista Matematica Iberoamericana, 10
A. Grigor’yan, Jiaxin Hu (2008)
Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spacesInventiones mathematicae, 174
M. Barlow, R. Bass (1999)
Brownian Motion and Harmonic Analysis on Sierpinski CarpetsCanadian Journal of Mathematics, 51
E. Davies (1989)
Heat kernels and spectral theory
M. Barlow, R. Bass, Zhen-Qing Chen, M. Kassmann (2006)
Non-local dirichlet forms and symmetric jump processesTransactions of the American Mathematical Society, 361
G. Carron, vol CvolΩ (2002)
INÉGALITÉS ISOPÉRIMÉTRIQUES DE FABER-KRAHN ET CONSÉQUENCES
A. Grigor’yan, Jiaxin Hu, K. Lau (2006)
Equivalence conditions for on-diagonal upper bounds of heat kernels on self-similar spacesJournal of Functional Analysis, 237
L. Saloff‐Coste (2001)
Aspects of Sobolev-type inequalities
M. Barlow, E. Perkins (1988)
Brownian motion on the Sierpinski gasketProbability Theory and Related Fields, 79
T. Coulhon (1996)
Ultracontractivity and Nash Type InequalitiesJournal of Functional Analysis, 141
F. Porper, S. Éidel'man (1984)
Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applicationsRussian Mathematical Surveys, 39
M. Fukushima, Y. Oshima, M. Takeda (1994)
Dirichlet forms and symmetric Markov processes
Feng-Yu Wang (2000)
Functional Inequalities for Empty Essential SpectrumJournal of Functional Analysis, 170
S. Superiore, D. Aronson (1968)
Non-negative solutions of linear parabolic equationsAnnali Della Scuola Normale Superiore Di Pisa-classe Di Scienze, 22
Katarzyna Pietruska-Pałuba (2000)
On function spaces related to fractional diffusions on d-setsStochastics and Stochastic Reports, 70
W. Hebisch, L. Saloff‐Coste (2001)
On the relation between elliptic and parabolic Harnack inequalitiesAnnales de l'Institut Fourier, 51
B. Hambly, T. Kumagai (1999)
Transition Density Estimates for Diffusion Processes on Post Critically Finite Self‐Similar FractalsProceedings of the London Mathematical Society, 78
A. Grigor’yan, Jiaxin Hu, K. Lau (2003)
Heat kernels on metric measure spaces and an application to semilinear elliptic equationsTransactions of the American Mathematical Society, 355
J. Nash (1958)
Continuity of Solutions of Parabolic and Elliptic EquationsAmerican Journal of Mathematics, 80
R. Schoen, S. Yau (1994)
Lectures on Differential Geometry
I. Chavel (1984)
Eigenvalues in Riemannian geometry
A. Bendikov, L. Saloff‐Coste (2000)
On- and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spacesAmerican Journal of Mathematics, 122
E. Carlen, S. Kusuoka, D. Stroock (1986)
Upper bounds for symmetric Markov transition functionsAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 23
A. Grigor’yan, A. Telcs (2001)
Sub-Gaussian estimates of heat kernels on infinite graphs, to appera in Duke Math
[In this survey we discuss heat kernel estimates of self-similar type on metric spaces with doubling measures. We characterize the tail functions from heat kernel estimates in both non-local and local cases. In the local case we also specify the domain of the energy form as a certain Besov space, and identify the walk dimension in terms of the critical Besov exponent. The techniques used include self-improvement of heat kernel upper bound and the maximum principle for weak solutions. All proofs are completely analytic.]
Published: Dec 30, 2009
Keywords: Primary: 47D07; Secondary: 28A80; 46E35; Doubling measure; heat kernel; maximum principle; heat equation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.