Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

From Classical to Modern Algebraic GeometryAn Account of Instanton Bundles on Hyperquadrics

From Classical to Modern Algebraic Geometry: An Account of Instanton Bundles on Hyperquadrics [We study instanton bundles on three-dimensional quadrics, paying special attention to the family of ’t Hooft bundles. We give explicit families of instanton bundles which are not ’t Hooft. In the last section we propose a generalization of an instanton bundle on odd dimensional hyperquadrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_{2n + 1} \subset {\mathbb{P}}^{2n + 2} $$\end{document} for arbitrary n and we state several open questions.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

From Classical to Modern Algebraic GeometryAn Account of Instanton Bundles on Hyperquadrics

Part of the Trends in the History of Science Book Series
Editors: Casnati, Gianfranco; Conte, Alberto; Gatto, Letterio; Giacardi, Livia; Marchisio, Marina; Verra, Alessandro

Loading next page...
 
/lp/springer-journals/from-classical-to-modern-algebraic-geometry-an-account-of-instanton-y9QsOiNln0

References (10)

Publisher
Springer International Publishing
Copyright
© Springer International Publishing Switzerland 2016
ISBN
978-3-319-32992-5
Pages
409 –428
DOI
10.1007/978-3-319-32994-9_10
Publisher site
See Chapter on Publisher Site

Abstract

[We study instanton bundles on three-dimensional quadrics, paying special attention to the family of ’t Hooft bundles. We give explicit families of instanton bundles which are not ’t Hooft. In the last section we propose a generalization of an instanton bundle on odd dimensional hyperquadrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_{2n + 1} \subset {\mathbb{P}}^{2n + 2} $$\end{document} for arbitrary n and we state several open questions.]

Published: Apr 22, 2017

Keywords: Modulus Space; Vector Bundle; Global Section; Fano Variety; Instanton Bundle

There are no references for this article.