Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Moore, Julian Coolidge
The geometry of the complex domain
F. Klein (1873)
Ueber die sogenannte Nicht-Euklidische GeometrieMathematische Annalen, 6
F. S.M., E. Cartan, Par Cartan
Les groupes projectifs qui ne laissent invariante aucune multiplicité planeBulletin de la Société Mathématique de France, 41
H. Freudenthal (1974)
The Impact of Von Staudt’s Foundations of Geometry
Annibale Comessatti (1912)
Fondamenti per la geometria sopra le suerficie razionali dal punto di vista realeMathematische Annalen, 73
E. Marchisotto (2006)
The projective geometry of Mario Pieri: A legacy of Georg Karl Christian von StaudtHistoria Mathematica, 33
J. Gray (2007)
The Legacy of Mario Pieri
K. Zindler (1903)
Geometrie der DynamenMonatshefte für Mathematik und Physik, 14
Robin Hartshorne (2007)
Publication history of von Staudt’s Geometrie der LageArchive for History of Exact Sciences, 62
J. Coolidge (1932)
A Treatise on Algebraic Plane Curves
E. Cartan (1950)
Leçons sur la géométrie projective complexe
Pures Appliquées, E. Cartan
Les groupes projectifs continus réels qui ne laissent invariante aucune multiplicitéJournal de Mathématiques Pures et Appliquées, 10
Corrado Segre (1892)
Le rappresentazioni reali delle forme complesse e gli enti iperalgebriciMathematische Annalen, 40
L. Cremona (1858)
Beiträge Zur Géometrie der lage, vonDr. Georg Karl Christian V. Staudt. ord. Professor an der Universität ErlangenAnnali di Matematica Pura ed Applicata (1858-1865), 1
Karl Staudt
Beiträge zur Geometrie der Lage
J. Coolidge (2012)
Die Dual-projektive Geometrie Im Elliptischen Und Sphärischen Raume ......
F. Enriquès (2009)
Lezioni di Geometria Proiettiva
Corrado Segre (1905)
La geometria d’oggidì e i suoi legami coll’analisiRendiconti del Circolo Matematico di Palermo (1884-1940), 19
C. Ciliberto, P. Gario (2012)
Federigo Enriques: The First Years in Bologna
Maurizio Avellone, Aldo Brigaglia, Carmela Zappulla (2002)
The Foundations of Projective Geometry in Italy from De Paolis to PieriArchive for History of Exact Sciences, 56
A. Tonolo (1954)
Commemorazione di Gregorio Ricci-Curbastro nel primo centenario della nascitaRendiconti del Seminario Matematico della Università di Padova, 23
Corrado Segre
Introduzione alla geometria sopra un ente algebrico semplicemente infinitoAnnali di Matematica Pura ed Applicata (1867-1897), 22
I. Yaglom (1966)
Les nombres complexes et leurs applications en géométrie
E. Cartan
Les groupes réels simples, finis et continusAnnales Scientifiques De L Ecole Normale Superieure, 31
Philippe Nabonnand (2008)
La théorie des Würfe de von Staudt – Une irruption de l’algèbre dans la géométrie pureArchive for History of Exact Sciences, 62
Thomas Hawkins (2012)
Emergence of the Theory of Lie Groups
Karl Staudt
Geometrie der Lage
E. Luciano, Silvia Clara (2012)
From Turin to Göttingen: dialogues and correspondence (1879-1923)Bollettino Di Storia Delle Scienze Matematiche, 32
[In 1886 Corrado Segre wrote to Felix Klein about his intention to study ‘géométrie projective pure’, completing and developing the work of von Staudt. He would continue this research project throughout the whole of his scientific life. In 1889, following a suggestion of Segre, Mario Pieri published his translation of the Geometrie der Lage, and from 1889 to 1890 Segre published four important papers, “Un nuovo campo di ricerche geometriche”, in which he completely developed complex projective geometry, considering new mathematical objects such as antiprojectivities and studying the Hermitian forms from a geometrical point of view with the related ‘hyperalgebraic varieties’. Segre developed the same ideas in 1892 in a new paper published in the Matematische Annalen, in which he also considers the so-called “bicomplex numbers” and provided the first example of a projective geometry on an algebra with zero-divisors. In 1891, during one of his celebrated courses in higher geometry, Segre asked his students to find a system of independent axioms for projective hyperspatial geometry. Fano, Enriques, Pieri and Amodeo, who wrote important papers, followed this proposal.]
Published: Apr 22, 2017
Keywords: Projective Geometry; Hermitian Form; Geometric Entity; Dual Number; Bicomplex Number
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.