Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Rohn (1879)
Transformation der hyperelliptischen Functionenp=2 und ihre Bedeutung für die Kummer'sche FlächeMathematische Annalen, 15
F. Schur (1883)
Ueber einen das System zweier Flächen 2. Grades betreffenden Satz und einen damit verbundenen Strahlencomplex 2. GradesMathematische Annalen, 21
Adolf Weiler (1874)
Ueber die verschiedenen Gattungen der Complexe zweiten GradesMathematische Annalen, 7
Cayley (1869)
On Plücker's Models of certain Quartic SurfacesProceedings of The London Mathematical Society
J. Plücker, A. Clebsch, F. Klein
Neue Geometrie des Raumes : gegründet auf die Betrachtung der geraden Linie als Raumelement
F. Klein (1884)
Ueber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Coordinaten auf eine canonische FormMathematische Annalen, 23
S. Lie, F. Klein (1884)
Ueber die Haupttangentencurven derKummer' schen Fläche vierten Grades mit 16 KnotenpunktenMathematische Annalen, 23
F. Klein (1870)
Zur Theorie der Liniencomplexe des ersten und zweiten GradesMathematische Annalen, 2
M. Schilling
Catalog mathematischer Modelle für den höheren mathematischen Unterricht
L. Giacardi (2001)
Corrado Segre maestro a Torino. La nascita della scuola italiana di geometria algebrica, 5
R. Ziegler (1985)
Die Geschichte der geometrischen Mechanik im 19. Jahrhundert : eine historisch-systematische Untersuchung von Möbius und Plücker bis zu Klein und Lindemann
Corrado Segre (1884)
Note sur les complexes quadratiques dont la surface singulière est une surface du 2e dégré doubleMathematische Annalen, 23
T. Hirst (1878)
Note on the Complexes generated by Two Correlative PlanesProceedings of The London Mathematical Society
F. Klein (1874)
Ueber die Plücker'sche ComplexflächeMathematische Annalen, 7
F. Klein (1872)
Ueber Liniengeometrie und metrische GeometrieMathematische Annalen, 5
E. Luciano, Silvia Clara (2012)
From Turin to Göttingen: dialogues and correspondence (1879-1923)Bollettino Di Storia Delle Scienze Matematiche, 32
Corrado Segre, G. Loria (1884)
Sur les différentes espèces de complexes du 2e dégrè des droites qui coupent harmoniquement deux surfaces du second ordreMathematische Annalen, 23
[Two of C. Segre’s earliest papers, (Segre 1883a) and (Segre 1884), dealt with the classification of quadratic line complexes, a central topic in line geometry. These papers, the first written together with Gino Loria, were submitted to Felix Klein in 1883 for publication in Mathematische Annalen. Together with the two lengthier works that comprise Segre’s dissertation, (Segre 1883b) and (Segre 1883c), they took up and completed a topic that Klein had worked on a decade earlier (when he was known primarily as an expert on line geometry). Using similar ideas, but a new and freer approach to higher-dimensional geometry, Segre not only refined and widened this earlier work but also gave it a new direction. Line geometry, as well described by Alessandro Terracini in his obituary for his mentor, proved to be an excellent starting point for both Segre and Italian algebraic geometry. The present account begins by looking back at the early work of Klein and Adolf Weiler on quadratic complexes in order to show how Segre’s two papers for Klein’s journal represented a new start that reawakened interest in a topic that had been dormant for nearly a decade. ]
Published: Apr 22, 2017
Keywords: Singularity Surface; Linear Complex; Line Complex; Double Line; Quadric Surface
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.