Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Graded Symmetry Groups: Plane and Simple

Graded Symmetry Groups: Plane and Simple The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of k linearly independent reflections can be decomposed into ⌈k/2⌉\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lceil {k/2}{\rceil }$$\end{document} commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of k-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras Rpqr\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^{{}}_{pqr}$$\end{document}, and use this in E(3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\text {E}({3})$$\end{document} to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Applied Clifford Algebras Springer Journals

Graded Symmetry Groups: Plane and Simple

Loading next page...
 
/lp/springer-journals/graded-symmetry-groups-plane-and-simple-Iw50LnWk0q

References (34)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0188-7009
eISSN
1661-4909
DOI
10.1007/s00006-023-01269-9
Publisher site
See Article on Publisher Site

Abstract

The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of k linearly independent reflections can be decomposed into ⌈k/2⌉\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lceil {k/2}{\rceil }$$\end{document} commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of k-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras Rpqr\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^{{}}_{pqr}$$\end{document}, and use this in E(3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\text {E}({3})$$\end{document} to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.

Journal

Advances in Applied Clifford AlgebrasSpringer Journals

Published: Jul 1, 2023

Keywords: Conformal group; Geometric gauge; Invariant decomposition; Lie groups; Lorentz group; Mozzi–Chasles’ theorem; Pseudo-Euclidean group; Wigner rotation

There are no references for this article.