Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Giné, D. Mason (2004)
The law of the iterated logarithm for the integrated squared deviation of a kernel density estimatorBernoulli, 10
(1991)
Comparison of sums of independent identically distributed random vectors
S. Kwapień, W. Woyczynski (1992)
Random Series and Stochastic Integrals: Single and Multiple
G. Samorodnitsky (1994)
Random series and stochastic integrals:single and multipleStochastics and Stochastics Reports, 49
J. Kuelbs (1978)
Probability on Banach spaces
[Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ X_1,\,X_2 ,\,.\,.\,.\,,X_n $$ \end{document} be independent random variables and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ S_k = \sum\nolimits_{i = 1}^k {X_i } $$ \end{document} We show that for any constants ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{P}(\mathop \mathrm{max}\limits_{1\leq k \leq n} \|S_k |-{a_k}|>11{t})\leq 30 \mathop \mathrm{max}\limits_{1\leq k \leq n} \mathbb{P}(\|S_k | -{a_k}|>t).$$ \end{document}We also discuss similar inequalities for sums of Hilbert and Banach spacevalued random vectors.]
Published: Apr 1, 2013
Keywords: Sums of independent random variables; random vectors; maximal inequality
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.