Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Bobkov, F. Götze (1999)
Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev InequalitiesJournal of Functional Analysis, 163
V. Girko (2002)
Extended proof of the Statement: Convergence rate of the expected spectral functions of symmetric random matrices Ξ n is equal to O (n—1/2) and the method of critical steepest descent, 10
L. Erdős, H. Yau, J. Yin (2010)
Rigidity of eigenvalues of generalized Wigner matricesAdvances in Mathematics, 229
J. Gustavsson (2004)
Gaussian fluctuations of eigenvalues in the GUEAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 41
A. Tikhomirov (2009)
On the rate of convergence of the expected spectral distribution function of a Wigner matrix to the semi-circular lawSiberian Advances in Mathematics, 19
V. Bentkus (2007)
On measure concentration for separately Lipschitz functions in product spacesIsrael Journal of Mathematics, 158
Z. Bai (1993)
Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner MatricesAnnals of Probability, 21
L. Erdős, H. Yau, J. Yin (2010)
Bulk universality for generalized Wigner matricesProbability Theory and Related Fields, 154
Дмитрий Тимушев, D. Timushev, Александр Тихомиров, A. Tikhomirov, Александр Холопов, A. Kholopov (2007)
О точности приближения спектра GOE полукруговым законом@@@Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble, 52
(2007)
On the accuracy of the approximation of the GOE spectrum by the semi-circular law
M. Ledoux (1997)
On Talagrand's deviation inequalities for product measuresEsaim: Probability and Statistics, 1
F. Götze, A. Tikhomirov (2003)
Rate of convergence to the semi-circular lawProbability Theory and Related Fields, 127
F. Götze, A. Tikhomirov (2005)
The rate of convergence for spectra of GUE and LUE matrix ensemblesCentral European Journal of Mathematics, 3
F. Götze, A. Tikhomirov (2007)
THE RATE OF CONVERGENCE OF SPECTRA OF SAMPLE COVARIANCE MATRICESTheory of Probability and Its Applications, 54
S. Bobkov, F. Götze, A. Tikhomirov (2010)
On Concentration of Empirical Measures and Convergence to the Semi-circle LawJournal of Theoretical Probability, 23
[Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X\;=\;(X_{jk})^n_{j,k=1}$$ \end{document} denote a Hermitian random matrix with entries Xjk, which are independent for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1\;\leq\;j\;\leq\;k\;\leq\;n$$ \end{document}. We consider the rate of convergence of the empirical spectral distribution function of the matrix X to the semi-circular law assuming that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbf{E}X_{jk}\;=\;0,\;\mathbf{E}X^2_{jk}\;=\;1$$ \end{document} and that the distributions of the matrix elements Xjk have a uniform sub exponential decay in the sense that there exists a constant ϰ> 0 such that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1\;\leq\;j\;\leq\;k\;\leq\;n$$ \end{document} and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$t\;\geq\;1$$ \end{document} we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathrm{Pr}\left\{|X_{jk}|\;>\;t \right\}\leq\;x^{-1}\;\exp\left\{-t^x\right\}$$ \end{document} By means of a short recursion argument it is shown that the Kolmogorov distance between the empirical spectral distribution of the Wigner matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbf{W}\;=\;\frac{1}{\sqrt{n}}\mathbf{X}$$ \end{document} and the semicircular law is of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O(n^{-1}\;\log^b\;n)$$ \end{document} with some positive constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$b\;>\;0$$ \end{document}]
Published: Apr 1, 2013
Keywords: Spectral distribution function; semi-circular law
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.